Methods for large-scale analysis of chemical-genetic interactions
化学-遗传相互作用的大规模分析方法
基本信息
- 批准号:8630348
- 负责人:
- 金额:$ 36.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-25 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelBacteriaBig DataBinding ProteinsBiochemicalBiological AssayBiological FactorsBiologyChemicalsCollectionDataDevelopmentDiagnosticDiseaseDrug TargetingEscherichia coliEukaryotic CellFDA approvedFingerprintFission YeastGene TargetingGenesGeneticGenetic StructuresGenomeGenomicsGoalsHealthHumanHuman GenomeLeadLibrariesLifeMapsMethodsOutcomePathway interactionsPharmaceutical PreparationsPhenotypeProcessProteinsResearchSaccharomyces cerevisiaeSourceSurveysTechnologyTestingTherapeuticTreesValidationWorkYeastsbasechemical geneticscomputer infrastructurecostdesigndrug developmentdrug discoveryexperiencegenome sequencinghigh throughput screeningimprovedinfrastructure developmentinnovationinterestmethod developmentmutantnext generation sequencingnovelnovel therapeuticspredictive modelingpublic health relevanceresearch and developmentscreeningsmall moleculesmall molecule librariestherapeutic development
项目摘要
Project Summary
The next-generation sequencing revolution is enabling unprecedented access to causal genes underlying a
variety of disease conditions. This information promises to lead to more effective and increasingly personalized
therapeutics as new disease mechanisms are characterized and target genes are identified. A critical
bottleneck in leveraging this information to the point of defining new treatments, however, is the development
of safe and effective therapeutics, which are often small molecules that bind the protein target of interest. Even
with a well-defined target, development of small molecule probes is expensive and inefficient, which is why it
can take years or even decades of drug development from discovery of the disease mechanism to an FDA
approved drug. The proposed research addresses this bottleneck with the long-term goal of rapidly
characterizing novel compounds' modes of action to build a comprehensive small molecule library targeting a
significant fraction of the human genome. The specific objective of this application is to develop key
computational infrastructure for high-throughput chemical genomics approaches, which leverage model
organism mutant libraries as a diagnostic for compound target discovery. This objective will be accomplished
through three specific aims: (1) the development of an experimental pipeline and computational infrastructure
for chemical genetic interaction mapping in S. cerevisiae, S. pombe, and E. coli and application of the
approach to large libraries of natural products or synthetic compound libraries, (2) the development of methods
for combining chemical-genetic and genetic interactions to predict mode-of-action for large compound libraries,
and (3) the development and experimental validation of predictive models for compound synergy.
The proposed research is innovative because it closely integrates computational approaches
leveraging the structure of genetic interaction networks with optimization of a powerful experimental assay.
Furthermore, it challenges the current paradigm of target-centric therapeutic development as well as the notion
of an inherent tradeoff in compound screening throughput when chemical genomic approaches are used. The
proposed work will demonstrate that chemical genomics can be scaled to accomodate the largest of chemical
libraries while providing an unbiased strategy for identifying novel modes of action. Other expected outcomes
include (1) the discovery of hundreds of new small molecule probes with precise modes of action, (2) methods
for integrating genome-scale data across species to improve the relevance of model organism chemical-
genetic data to human health, (3) fundamental characterization of how the diversity of natural products
interacts with eukaryotic cells on a global scale, and (4) mechanistic understanding, predictive models, as well
as several novel discoveries of compound combinations that act synergistically.
项目摘要
下一代测序革命使人们能够前所未有地获得潜在的致病基因,
各种疾病状况。这些信息有望导致更有效和越来越个性化的
作为新的疾病机制的治疗剂被表征并且靶基因被鉴定。一个关键
然而,利用这些信息来定义新治疗方法的瓶颈是开发
安全有效的治疗药物,通常是结合目标蛋白质的小分子。甚至
由于目标明确,小分子探针的开发既昂贵又低效,这就是为什么它
从疾病机制的发现到FDA的批准,
批准的药物。拟议的研究解决了这一瓶颈,其长期目标是迅速
表征新化合物的作用模式,以构建针对
人类基因组的重要组成部分。该应用程序的具体目标是开发关键
高通量化学基因组学方法的计算基础设施,
生物突变体库作为化合物靶标发现的诊断。这一目标将得以实现
通过三个具体目标:(1)开发实验管道和计算基础设施
化学遗传互作作图。酿酒酵母,S. pombe和E.大肠杆菌的研究及应用
天然产物或合成化合物库的大型库的方法,(2)方法的开发
为了结合化学-遗传和遗传相互作用来预测大型化合物文库的作用模式,
(3)化合物协同作用预测模型的建立和实验验证。
拟议的研究是创新的,因为它紧密结合了计算方法
利用遗传相互作用网络的结构,优化强大的实验测定。
此外,它挑战了当前以目标为中心的治疗开发的范式以及
当使用化学基因组方法时,化合物筛选通量的固有权衡。的
拟议的工作将表明,化学基因组学可以扩大规模,以适应最大的化学
库,同时提供用于鉴定新的作用模式的无偏见的策略。其他预期成果
包括(1)发现了数百种具有精确作用模式的新的小分子探针,(2)
用于整合跨物种的基因组规模数据,以提高模式生物化学的相关性,
遗传数据对人类健康的影响,(3)天然产品多样性的基本特征
在全球范围内与真核细胞相互作用,以及(4)机械理解,预测模型,以及
作为协同作用的化合物组合的几个新发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chad L Myers其他文献
<em>TP53</em>-Mutated Acute Myeloid Leukemia Patients Treated with Intensive Therapies Have Superior Outcomes: A Single Institution, Retrospective Study
- DOI:
10.1182/blood-2023-177757 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Nuttavut Sumransub;Gabriel K Steinwand;Yoonkyu Lee;Qing Cao;Jeremy R. Allred;Vidhyalakshmi Ramesh;Chad L Myers;Zohar Sachs - 通讯作者:
Zohar Sachs
Secondhand Smoke and Heart Disease
二手烟与心脏病
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:10.4
- 作者:
C. Huttenhower;Avi I Flamholz;Jessica N Landis;Sauhard Sahi;Chad L Myers;Kellen L. Olszewski;Matthew A. Hibbs;Nathan O Siemers;O. Troyanskaya;Hilary A Coller - 通讯作者:
Hilary A Coller
SCA-AD, a Novel Method to Uniformly Identify Cells across Single-Cell RNA Sequencing Datasets, Applied to Adult and Pediatric Self-Renewing AML Cells
- DOI:
10.1182/blood-2024-208337 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Yoonkyu Lee;Wen Wang;Timothy K Starr;Klara E Noble-Orcutt;Chad L Myers;Zohar Sachs - 通讯作者:
Zohar Sachs
Machine learning analysis of gene expression reveals TP53 Mutant-like AML with wild type TP53 and poor prognosis
基因表达的机器学习分析揭示了具有野生型 TP53 的 TP53 突变样 AML 和不良预后
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:12.8
- 作者:
Yoonkyu Lee;L. Baughn;Chad L Myers;Z. Sachs - 通讯作者:
Z. Sachs
Single Cell Correlation Analysis: A Novel Method to Analyze Single Cell RNA Sequencing Data Identifies a Self-Renewing Subpopulation of Human Acute Myeloid Leukemia Stem Cells
- DOI:
10.1182/blood-2023-186606 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Yoonkyu Lee;Wen Wang;Timothy K Starr;Klara E Noble-Orcutt;Chad L Myers;Zohar Sachs - 通讯作者:
Zohar Sachs
Chad L Myers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chad L Myers', 18)}}的其他基金
Computational Strategies for Quantitative Mapping of Genetic Interaction Networks
遗传相互作用网络定量作图的计算策略
- 批准号:
7887777 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
Computational Strategies for Quantitative Mapping of Genetic Interaction Networks
遗传相互作用网络定量作图的计算策略
- 批准号:
8133157 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
- 批准号:
9973724 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
- 批准号:
10241348 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
Computational Strategies for Quantitative Mapping of Genetic Interaction Networks
遗传相互作用网络定量作图的计算策略
- 批准号:
8280356 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
- 批准号:
10414135 - 财政年份:2010
- 资助金额:
$ 36.3万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists