Computational Strategies for Quantitative Mapping of Genetic Interaction Networks

遗传相互作用网络定量作图的计算策略

基本信息

  • 批准号:
    8280356
  • 负责人:
  • 金额:
    $ 21.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-25 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Recent studies suggest that many diseases, particularly those that commonly afflict our population, result from interactions among multiple alleles. In an attempt to understand these complex phenotypes, recent experimental efforts in model organisms have focused on measuring such interactions by engineering combinatorial genetic perturbations. Due to the enormous space of possible mutants, brute-force experimental investigation is simply not feasible, and thus, there is a critical need for computational strategies for intelligent exploration of genetic interaction networks. The specific objective of this application is to develop a computational framework for leveraging the existing genomic or proteomic data to enable intelligent direction of combinatorial perturbation studies. The rationale for the proposed research is that although current knowledge of genetic interactions is sparse, the integration of existing genomic and proteomic data can enable the inference of network models that suggest promising candidates for high-throughput interaction screens. Using such computational guidance should enable more efficient characterization of network structure, and ultimately, better understanding of how genes contribute to complex phenotypes. Based on strong findings in preliminary studies, this objective will be accomplished through two specific aims: (1) development of critical normalization methods and quantitative models for colony array-based interaction assays, and (2) novel machine learning-based approaches for iterative model refinement and optimal interaction screen selection. The proposed research is innovative because it would represent one of the first efforts to couple genomic data integration and network inference technology with a large-scale experimental effort, where several months of experimental investigation are based entirely on computational direction. Such an approach will yield insight into how combinatorial perturbations can be used to characterize global modularity and organization, and more generally, would serve as a prototype for hybrid computational-experimental strategies in other genomic contexts. PUBLIC HEALTH RELEVANCE: Many common diseases result from interactions among multiple genes. One approach to studying multigenic interactions is to introduce combinations of mutations in model organisms and observe how they affect the cell. This project proposes to develop computational strategies to guide and interpret these combinatorial perturbation studies, which will ultimately help us better understand and treat multigenic diseases.
描述(由申请人提供):最近的研究表明,许多疾病,特别是那些普遍困扰我们的人群的疾病,是由多个等位基因之间的相互作用造成的。为了理解这些复杂的表型,最近在模式生物中的实验努力集中在通过工程组合遗传扰动来测量这种相互作用。由于可能的突变体空间巨大,暴力实验研究根本不可行的,因此,迫切需要对遗传相互作用网络进行智能探索的计算策略。本应用程序的具体目标是开发一个计算框架,以利用现有的基因组或蛋白质组学数据来实现组合扰动研究的智能方向。提出的研究的基本原理是,尽管目前对遗传相互作用的了解很少,但现有基因组学和蛋白质组学数据的整合可以使网络模型推断出高通量相互作用筛选的有希望的候选者。使用这样的计算指导应该能够更有效地表征网络结构,并最终更好地理解基因如何促成复杂的表型。基于初步研究的有力发现,这一目标将通过两个具体目标来实现:(1)为基于群体阵列的相互作用分析开发关键的归一化方法和定量模型,以及(2)基于迭代模型改进和最佳相互作用筛选的新型机器学习方法。拟议的研究具有创新性,因为它代表了将基因组数据集成和网络推理技术与大规模实验工作相结合的首次努力之一,其中几个月的实验研究完全基于计算方向。这种方法将使我们深入了解组合扰动如何用于表征全局模块化和组织,更一般地说,将作为其他基因组背景下混合计算-实验策略的原型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chad L Myers其他文献

<em>TP53</em>-Mutated Acute Myeloid Leukemia Patients Treated with Intensive Therapies Have Superior Outcomes: A Single Institution, Retrospective Study
  • DOI:
    10.1182/blood-2023-177757
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Nuttavut Sumransub;Gabriel K Steinwand;Yoonkyu Lee;Qing Cao;Jeremy R. Allred;Vidhyalakshmi Ramesh;Chad L Myers;Zohar Sachs
  • 通讯作者:
    Zohar Sachs
Secondhand Smoke and Heart Disease
二手烟与心脏病
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    C. Huttenhower;Avi I Flamholz;Jessica N Landis;Sauhard Sahi;Chad L Myers;Kellen L. Olszewski;Matthew A. Hibbs;Nathan O Siemers;O. Troyanskaya;Hilary A Coller
  • 通讯作者:
    Hilary A Coller
SCA-AD, a Novel Method to Uniformly Identify Cells across Single-Cell RNA Sequencing Datasets, Applied to Adult and Pediatric Self-Renewing AML Cells
  • DOI:
    10.1182/blood-2024-208337
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Yoonkyu Lee;Wen Wang;Timothy K Starr;Klara E Noble-Orcutt;Chad L Myers;Zohar Sachs
  • 通讯作者:
    Zohar Sachs
Machine learning analysis of gene expression reveals TP53 Mutant-like AML with wild type TP53 and poor prognosis
基因表达的机器学习分析揭示了具有野生型 TP53 的 TP53 突变样 AML 和不良预后
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Yoonkyu Lee;L. Baughn;Chad L Myers;Z. Sachs
  • 通讯作者:
    Z. Sachs
Single Cell Correlation Analysis: A Novel Method to Analyze Single Cell RNA Sequencing Data Identifies a Self-Renewing Subpopulation of Human Acute Myeloid Leukemia Stem Cells
  • DOI:
    10.1182/blood-2023-186606
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Yoonkyu Lee;Wen Wang;Timothy K Starr;Klara E Noble-Orcutt;Chad L Myers;Zohar Sachs
  • 通讯作者:
    Zohar Sachs

Chad L Myers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chad L Myers', 18)}}的其他基金

Computational Strategies for Quantitative Mapping of Genetic Interaction Networks
遗传相互作用网络定量作图的计算策略
  • 批准号:
    7887777
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:
Methods for large-scale analysis of chemical-genetic interactions
化学-遗传相互作用的大规模分析方法
  • 批准号:
    8630348
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:
Computational Strategies for Quantitative Mapping of Genetic Interaction Networks
遗传相互作用网络定量作图的计算策略
  • 批准号:
    8133157
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
  • 批准号:
    9973724
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
  • 批准号:
    10241348
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:
Computational Methods for Mapping Genetic Interactions in Human Cells
绘制人类细胞遗传相互作用的计算方法
  • 批准号:
    10414135
  • 财政年份:
    2010
  • 资助金额:
    $ 21.87万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了