Leveraging data-science for discovery in chronic TBI

利用数据科学发现慢性 TBI

基本信息

项目摘要

Chronic traumatic brain injury (TBI) is one of the most prevalent neurological disorders in both military and civilian populations, impacting up to 5.3 million people in the US and costing $76 billion in healthcare and loss- of-productivity. Yet relatively little is known about the precise neurobiological features of chronic TBI leading to dysfunction and disability. This lack of knowledge limits the reliability of therapeutic development in animal models and limits translation across species and into human patients. Part of the problem is that chronic TBI is intrinsically complex, involving heterogeneous damage to the most complex organ system. This results in a multifaceted syndrome spanning across heterogeneous data sources and multiple scales of analysis. This multi-scale heterogeneity makes chronic TBI difficult to understand using traditional analytical approaches that focus on a single endpoint for testing therapeutic efficacy. Single endpoints reflect a small portion of a complex system of changes that describe the holistic syndrome of chronic TBI. In this sense, complex chronic TBI is fundamentally a ‘big-data’ problem requiring pooled information and analytics to evaluate reproducibility in basic discovery and cross-species translation. The proposed project will develop novel applications of cutting edge multidimensional analytics to integrate preclinical chronic TBI data on a large scale. The goal of the proposed project is to develop an integrated workflow for preclinical discovery, reproducibility testing, and translational discovery both within and across chronic TBI types. The project team is well-positioned to execute this project given that with prior federal funding it built one of the largest multicenter, multispecies repositories of neurotrauma data to-date, housing detailed multidimensional outcome data on nearly 4000 mice, rats, pigs, and monkeys. The proposed VA merit award will expand these data with new data-donations collected from 5 preclinical TBI research laboratories across the US, including chronic (>1 month) TBI models of penetrating injury, closed head injuries, repeated mild injuries, acceleration/ deceleration, lateral fluid percussion, and blast injuries. The project will harmonize these existing data resources into a single data pool, enabling application of recent innovations from data science to render complex multidimensional endpoint data into robust syndromic patterns that can be visualized and explored by researchers in a user-friendly manner. The project will accelerate data-driven-discovery, scientific reproducibility, hypothesis-generation, and ultimately precision medicine for chronic TBI.
慢性创伤性脑损伤(TBI)是军事和军事领域最常见的神经系统疾病之一, 平民,影响美国多达530万人,造成760亿美元的医疗保健和损失, 生产力。然而,对慢性TBI的精确神经生物学特征知之甚少, 功能障碍和残疾。这种知识的缺乏限制了动物治疗开发的可靠性。 模型和限制跨物种和人类患者的翻译。部分问题在于慢性TBI 本质上很复杂,涉及对最复杂的器官系统的异质损伤。这导致 跨异构数据源和多个分析尺度的多方面综合征。这 多尺度异质性使得慢性TBI难以使用传统的分析方法来理解, 专注于测试治疗效果的单一终点。单个端点反映了一小部分 描述慢性TBI整体综合征的复杂变化系统。从这个意义上说, TBI从根本上说是一个“大数据”问题,需要汇集信息和分析来评估再现性 在基础发现和跨物种翻译方面。建议的项目将开发新的应用, 尖端的多维分析,以大规模整合临床前慢性TBI数据。的目标 拟议的项目是为临床前发现、再现性测试和 在慢性TBI类型内和跨慢性TBI类型的翻译发现。项目团队有能力执行 这个项目是因为在联邦的资助下,它建立了一个最大的多中心、多物种的储藏库 迄今为止的神经创伤数据,包含近4000只小鼠,大鼠,猪, 还有猴子拟议的退伍军人管理局优秀奖将通过从5个国家收集的新数据捐赠来扩展这些数据 美国临床前TBI研究实验室,包括慢性(>1个月)穿透性TBI模型 损伤、闭合性头部损伤、重复性轻度损伤、加速/减速、侧向液压冲击和冲击波 受伤该项目将把这些现有的数据资源统一到一个单一的数据库中, 数据科学的最新创新,将复杂的多维端点数据转化为强大的 研究人员可以以用户友好的方式可视化和探索的症状模式。项目 将加速数据驱动的发现、科学可重复性、假设生成,并最终实现精确性 治疗慢性TBI的药物

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADAM R FERGUSON其他文献

ADAM R FERGUSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金

Pan-Neurotrauma Data Commons
泛神经创伤数据共享
  • 批准号:
    10478255
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Pan-Neurotrauma Data Commons
泛神经创伤数据共享
  • 批准号:
    10269617
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
  • 批准号:
    10276397
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
  • 批准号:
    10608657
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
  • 批准号:
    10649639
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Pan-Neurotrauma Data Commons
泛神经创伤数据共享
  • 批准号:
    10684922
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
  • 批准号:
    10449363
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
  • 批准号:
    10641318
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
  • 批准号:
    10757109
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
  • 批准号:
    10269003
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
  • 批准号:
    23K10540
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
  • 批准号:
    23K16596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
  • 批准号:
    2245652
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
  • 批准号:
    23K16412
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
  • 批准号:
    499112
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
  • 批准号:
    10429480
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
  • 批准号:
    22K17540
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
  • 批准号:
    10668160
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
  • 批准号:
    10621820
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了