Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
基本信息
- 批准号:9742296
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationActivities of Daily LivingAnimal ModelAwardBig DataBig Data MethodsBiologicalBlast InjuriesCategoriesCentral Nervous System DiseasesChronicClinicalClosed head injuriesCommon Data ElementComplexCortical ContusionsDataData CommonsData PoolingData ProvenanceData ScienceData SourcesDecelerationDiseaseFAIR principlesFamily suidaeFederal GovernmentFunctional disorderFundingFutureGenerationsGeneticGoalsGrantHealthcareHeterogeneityHigh PrevalenceHousingHumanImpairmentIncentivesInfrastructureIngestionInjuryKnowledgeKnowledge DiscoveryLaboratory ResearchLateralLinkLiquid substanceLiteratureMachine LearningMilitary PersonnelModelingModernizationMolecularMonkeysMotorMusNational Institute of Neurological Disorders and StrokeNervous System TraumaNeurobiologyNeurocognitionNeurologicNeurosciencesOutcomePatientsPatternPercussionPersonalityPopulationPositioning AttributePrincipal Component AnalysisProcessRattusRecoveryRecovery of FunctionReproducibilityResearchResearch PersonnelResearch Project GrantsRodentShapesSourceSyndromeSystemTaxonomyTestingTherapeuticTherapeutic EffectTimeTranslatingTranslationsTraumatic Brain InjuryTreatment EfficacyVertebral columnVeteransWell in selfanalytical toolbench to bedsidebody systemcomputerized data processingcostdata dictionarydata exchangedata integrationdata resourcedata reusedata sharingdata warehousedigital object identifierdisabilityfluid percussion injuryheterogenous dataimprovedinnovationinsightmultidimensional datanervous system disordernovelpre-clinicalprecision medicineproductivity lossrepositoryrestorationtherapeutic developmenttherapeutic evaluationtooluser-friendly
项目摘要
Chronic traumatic brain injury (TBI) is one of the most prevalent neurological disorders in both military and
civilian populations, impacting up to 5.3 million people in the US and costing $76 billion in healthcare and loss-
of-productivity. Yet relatively little is known about the precise neurobiological features of chronic TBI leading to
dysfunction and disability. This lack of knowledge limits the reliability of therapeutic development in animal
models and limits translation across species and into human patients. Part of the problem is that chronic TBI is
intrinsically complex, involving heterogeneous damage to the most complex organ system. This results in a
multifaceted syndrome spanning across heterogeneous data sources and multiple scales of analysis. This
multi-scale heterogeneity makes chronic TBI difficult to understand using traditional analytical approaches that
focus on a single endpoint for testing therapeutic efficacy. Single endpoints reflect a small portion of a
complex system of changes that describe the holistic syndrome of chronic TBI. In this sense, complex chronic
TBI is fundamentally a ‘big-data’ problem requiring pooled information and analytics to evaluate reproducibility
in basic discovery and cross-species translation. The proposed project will develop novel applications of
cutting edge multidimensional analytics to integrate preclinical chronic TBI data on a large scale. The goal of
the proposed project is to develop an integrated workflow for preclinical discovery, reproducibility testing, and
translational discovery both within and across chronic TBI types. The project team is well-positioned to execute
this project given that with prior federal funding it built one of the largest multicenter, multispecies repositories
of neurotrauma data to-date, housing detailed multidimensional outcome data on nearly 4000 mice, rats, pigs,
and monkeys. The proposed VA merit award will expand these data with new data-donations collected from 5
preclinical TBI research laboratories across the US, including chronic (>1 month) TBI models of penetrating
injury, closed head injuries, repeated mild injuries, acceleration/ deceleration, lateral fluid percussion, and blast
injuries. The project will harmonize these existing data resources into a single data pool, enabling application
of recent innovations from data science to render complex multidimensional endpoint data into robust
syndromic patterns that can be visualized and explored by researchers in a user-friendly manner. The project
will accelerate data-driven-discovery, scientific reproducibility, hypothesis-generation, and ultimately precision
medicine for chronic TBI.
慢性创伤性脑损伤(TBI)是军事和
平民人口影响美国多达530万人,耗资760亿美元的医疗保健和损失 -
生产力。然而,关于慢性TBI的精确神经生物学特征的了解相对较少
功能障碍和残疾。缺乏知识限制了动物热发展的可靠性
模型和限制跨物种和人类患者的翻译。问题的一部分是慢性TBI是
本质上复杂,涉及对最复杂的器官系统的异质损害。这导致
多方面综合征跨越异质数据源和多个分析量表。这
多尺度异质性使慢性TBI难以使用传统的分析方法来理解
专注于测试治疗效率的单个端点。单端点反映了一小部分
描述慢性TBI的整体综合征的复杂变化系统。从这个意义上说,复杂的慢性
TBI从根本上是一个“大数据”问题,需要汇总信息和分析来评估可重复性
在基本发现和跨物种翻译中。拟议的项目将开发新的应用
尖端多维分析,以大规模整合临床前慢性TBI数据。目标
拟议的项目是为临床前发现,可重复性测试和
慢性TBI类型内部和跨性别的转化发现。项目团队的执行良好
该项目鉴于有了以前的联邦资助,它建立了最大的多中心之一的多人存储库之一
迄今为止的神经曲菌数据,近4000只小鼠,大鼠,猪,,详细的多维结果数据
和猴子。拟议的VA功绩奖将通过从5个收集的新数据介绍来扩展这些数据
全美的临床前TBI研究实验室,包括慢性(> 1个月)TBI穿透模型
受伤,闭合头部受伤,重复轻度损伤,加速/减速,侧液打击乐和爆炸
受伤。该项目将将这些现有数据资源协调到一个数据库中,从而实现应用程序
从数据科学到将复杂的多维终点数据呈现到鲁棒的最新创新
研究人员可以用用户友好的方式对综合征模式进行可视化和探索。项目
将加速数据驱动的发现,科学可重复性,假设生成,并最终精确
慢性TBI的医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM R FERGUSON其他文献
ADAM R FERGUSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
- 批准号:
10608657 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10649639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10449363 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10641318 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10757109 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10269003 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
- 批准号:52378053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
川江流域山地旧城滨水区日常生活空间与地形关系演进及其当代传承研究:以重庆为例(1891-2004)
- 批准号:52308006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:42201250
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
融合媒介环境学视角的日常生活空间体验研究
- 批准号:42171221
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Using functional readouts from engineering models of innervated skeletal muscle to assess the efficacy of CRISPR-based c9orf72 ALS gene therapies
使用受神经支配的骨骼肌工程模型的功能读数来评估基于 CRISPR 的 c9orf72 ALS 基因疗法的功效
- 批准号:
10653223 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Cancer Proteome Atlas: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
癌症蛋白质组图谱:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
10653202 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of a Peptide Therapy for Corneal Wound Healing
开发用于角膜伤口愈合的肽疗法
- 批准号:
10484711 - 财政年份:2022
- 资助金额:
-- - 项目类别: