Pan-Neurotrauma Data Commons
泛神经创伤数据共享
基本信息
- 批准号:10684922
- 负责人:
- 金额:$ 73.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionAffectAnatomyAnimal ModelBehavioralBig DataBig Data MethodsBrainCentral Nervous SystemCertificationCollaborationsCommon Data ElementCommunitiesComplexControlled VocabularyDataData AnalysesData CommonsData PoolingData SetDedicationsDiseaseDisparateEcosystemEducational workshopFAIR principlesFeedbackFunctional disorderFutureGenerationsGoalsHealthHealthcareHeterogeneityHumanImpairmentIndividualInfrastructureInjuryInternationalInternetKnowledgeLaboratoriesLicensingLife Cycle StagesMedicalMetadataMonitorMultiple TraumaMusNational Institute of Neurological Disorders and StrokeNervous System TraumaNeurosciencesOntologyOrangesOutcome AssessmentOutcome MeasurePersonsPhysiologyPolicePoliciesPositioning AttributePredictive ValuePrevalenceProcessProductivityPublication BiasPublicationsQuality ControlRattusRecoveryRecovery of FunctionReportingReproducibilityReproducibility of ResultsResearchResearch PersonnelSeveritiesSiteSpinal CordSpinal cord injuryStandardizationStructureSyndromeSystemTerminologyTestingTissue ExpansionTranslationsTraumaTraumatic Brain InjuryTraumatic CNS injuryTreatment EfficacyU-Series Cooperative AgreementsUnited States National Institutes of HealthVisualizationWorkadvanced analyticsbody systemcentral nervous system injuryclinical implementationclinically relevantcommunity engagementcomplex datacostdashboarddata complexitydata formatdata interoperabilitydata managementdata miningdata qualitydata repositorydata resourcedata reusedata sharingdata standardsdata visualizationdata wranglingdigital object identifierdiverse dataeconomic costeconomic impactexperienceexperimental studyhuman dataimprovedinformation frameworkinsightinteroperabilitylarge scale dataneuroinformaticsnew technologynovelnovel markeropen dataopen sourceoperationpre-clinicalprecision medicinepreservationproductivity lossprospectivepublic repositoryquality assurancerepairedrepositoryskillsspinal cord and brain injurysuccesssymposiumtherapeutic developmenttherapeutic evaluationtooltranslational medicinetranslational therapeuticstrustworthinessvirtual laboratoryweb portalwebinar
项目摘要
PROJECT SUMMARY/ABSTRACT
Trauma to the central nervous system (CNS: spinal cord and brain) together affect more than 2.5 million people
per year in the US, with economic costs of $80 billion in healthcare and loss-of-productivity. Yet, the precise
pathophysiological processes impairing recovery remain poorly understood. This lack of knowledge is
exacerbated by poor reproducibility of findings in animal models and limits translation of therapeutics across
species and into humans. Part of the problem is that neurotrauma is intrinsically complex, involving
heterogeneous damage to the central nervous system (CNS), by far the most complex organ system in the body.
This results in a multifaceted CNS syndrome reflected across heterogeneous endpoints and multiple scales of
analysis. Multi-scale heterogeneity makes traumatic brain injury (TBI) and spinal cord injury (SCI) difficult to
understand using traditional analytical approaches that focus on a single endpoint for testing therapeutic efficacy.
Single endpoint-testing provides a narrow window into the complex system of changes that describe SCI and
TBI. Understanding these disorders involves managing datasets that include high volume anatomy data, high
velocity physiology decision-support data, the high variety functional/behavioral data, and assessing correlations
among these endpoints. In this sense, neurotrauma is fundamentally a data management problem that involves
the classic ‘3Vs of big data’ (volume, velocity, variety). Of these, variety is perhaps the greatest data challenge
in neurotrauma research for reproducibility in basic discovery, cross-species translation, and ultimately clinical
implementation. For the proposed Data Repositories Cooperative Agreement (U24) we will build on our prior
work managing data variety in the Open Data Commons for SCI (odc-sci.org) and TBI (odc-tbi.org) to make
neurotrauma data Findable, Accessible, Interoperable, and Reusable (FAIR). The milestone-driven aims will: 1)
further develop and harden our data lifecycle management system with end-to-end data version control and
provenance tracking, data certification, and data citation; 2) develop in-cloud data dashboards and visualizations
to monitor data quality and to promote data reuse, exploration, and hypothesis generation; 3) establish a pan-
neurotrauma (PANORAUMA) data commons that brings together separate data assets currently supported by
our multi-PI (MPI) team by aligning a patchwork of governance structures and policies. The goal of the proposed
project is to develop a pooled repository for preclinical discovery, reproducibility testing, and translational
discovery both within and across neurotrauma types. Our team is well-positioned to execute this project given
that we developed some of the largest multicenter, multispecies neurotrauma data repositories of neurotrauma
to-date (N>10,000 subjects 20,000 curated variables); the Neuroscience Information Framework (NIF); data
terminologies and standards for these fields (MIASCI, NIFSTD); and policy work with the International
Neuroinformatics Coordinating Facility (INCF). The PANORAUMA cooperative agreement is highly responsive
to PAR-20-089, leveraging early successes in SCI and TBI data sharing to improve quality and sustainability.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM R FERGUSON其他文献
ADAM R FERGUSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
$ 73.76万 - 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
- 批准号:
10608657 - 财政年份:2021
- 资助金额:
$ 73.76万 - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10649639 - 财政年份:2021
- 资助金额:
$ 73.76万 - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10449363 - 财政年份:2021
- 资助金额:
$ 73.76万 - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
9742296 - 财政年份:2018
- 资助金额:
$ 73.76万 - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10641318 - 财政年份:2018
- 资助金额:
$ 73.76万 - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10757109 - 财政年份:2018
- 资助金额:
$ 73.76万 - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10269003 - 财政年份:2018
- 资助金额:
$ 73.76万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 73.76万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 73.76万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 73.76万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 73.76万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 73.76万 - 项目类别:
Standard Grant