Semi-parametric Statistical Methods for Predicting High-cost VA Patients Using High-Dimensional Covariates
使用高维协变量预测高成本 VA 患者的半参数统计方法
基本信息
- 批准号:9695867
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAmbulatory Care FacilitiesAreaBudgetsBusinessesCaringCessation of lifeClassificationCollaborationsComputerized Medical RecordCost AnalysisCost ControlDataData AnalysesData SetDatabasesDecision Support SystemsDiseaseExpenditureFoundationsFutureGoalsHealth Care CostsHealthcareIntelligenceInterventionLeadLinkMethodsModelingModernizationNeeds AssessmentNursesOutcomePatientsPoliciesPolicy MakerPredictive AnalyticsPrimary Health CareProceduresQuality of CareRecordsResearch PersonnelResourcesRisk FactorsStatistical AlgorithmStatistical Data InterpretationStatistical MethodsSystemTestingTimeVeteransVisitWorkbasebeneficiarycostdesigneffective interventioneffectiveness validationflexibilityhealth care qualityhigh dimensionalityimprovedintervention costmodifiable riskmultidimensional datanovelprospectivesemiparametrictheories
项目摘要
Background: The rising demands and health care costs make it urgent to develop new statistical
methods to accurately predict high-costs VA patients and important risk factors associated with high
costs. The ability to prospectively predict high-costs patients is an important step toward controlling
future health care costs. It is also important to identify disease areas that contribute significantly to the
high health care costs and other risk factors which policy makers can target by future intervention.
Health care cost data are characterized by a high level of skewness and heteroscedastic variances.
The large number of variables collected in the VA database provides rich information, but at the same
time, imposes great challenges for statistical analysis and computation. The administrative and
electronic medical record data from VA databases often contain missing data. The new statistical
procedure we propose aims to take advantage of the rich databases in VA for analyzing costs data. It
employs and develops state-of-art high-dimensional semiparametric statistical procedures to handle the
complexity of VA data sets.
Objectives: The project aims to develop a High Costs Prediction (HCP) system, which employs novel
high-dimensional semiparametric statistical methods and algorithms to analyze large VA database with
missing values and occurrence of censoring. The HCP system identifies potential high-costs patients,
provides prediction intervals of future costs, and suggests a list of important risk factors for cost control.
The outcomes of the project will help VA researchers and policy makers design effective interventions
to target those potential high-cost patients and reduce their costs without sacrificing quality of care. The
project will collaborate closely with VA Office of Analytics and Business Intelligence (OABI) to analyze
costs data for patients receiving primary care within VHA. In particular, we will identify a set of
modifiable risk factors (MRF) that are simultaneously important for improving care and reducing costs.
Our proposed work fills in an important blank area of VA health care costs data analysis. By combining
the HCP system with the existing Care Assessment Needs Scoring (CAN) system, we will make
important progress toward the ultimate goal of building a data-driven decision support system.
Methods: The project will develop a novel semiparametric procedure for predicting high costs patients.
The approach we propose incorporates high-dimensional covariates and nonlinear covariate effects
and addresses the challenge of censoring by death, which improves accuracy and increases the
flexibility of modeling. It does not require discretizing the cost and hence fully uses the information
contained in the cost data. It does not require any parametric distributional assumption. Another major
contribution of this project is that we propose weighted semiparametric quantile regression based novel
variable selection procedures which can simultaneously identify and estimate significant risk factors for
high-dimensional data at the presence of missing values. Our approach will develop a patient level
dataset that combines all available cost data from the databases provided through the Decision Support
System (DSS) National Extracts. We will link data from the Managerial Cost Accounting System (MCA,
formerly Decision Support System or DSS) with three VA databases including: the VA Patient
Treatment File (PTF); the VA Outpatient Clinic File (OCF); and the VA Beneficiary Identification and
Records Locator Subsystem death file. We will compare the newly proposed methods with existing
methods using both the VA data and simulated data.
背景:不断增长的需求和医疗保健成本使得迫切需要开发新的统计方法,
准确预测高成本VA患者和与高成本VA相关的重要风险因素的方法
成本前瞻性预测高成本患者的能力是控制成本的重要一步。
未来的医疗费用。同样重要的是要确定疾病领域,大大有助于
高医疗保健费用和其他风险因素,决策者可以通过未来的干预措施来解决这些问题。
卫生保健成本数据的特点是偏度和异方差的高水平。
VA数据库中收集的大量变量提供了丰富的信息,但同时
时间,对统计分析和计算提出了巨大的挑战。行政和
来自VA数据库的电子病历数据通常包含缺失数据。新的统计
我们提出的程序旨在利用VA中丰富的数据库来分析成本数据。它
采用并开发了最先进的高维半参数统计程序来处理
VA数据集的复杂性。
目标:该项目旨在开发一个高成本预测(HCP)系统,该系统采用新颖的
分析大型VA数据库的高维半参数统计方法和算法
缺失值和删失发生率。HCP系统识别潜在的高成本患者,
提供了未来成本的预测区间,并提出了成本控制的重要风险因素清单。
该项目的成果将帮助退伍军人事务部的研究人员和政策制定者设计有效的干预措施
以那些潜在的高成本患者为目标,在不牺牲护理质量的情况下降低他们的成本。的
该项目将与VA分析和商业智能办公室(OABI)密切合作,
在VHA内接受初级保健的患者的成本数据。特别是,我们将确定一组
可改变的风险因素(MRF)对于改善护理和降低成本同时重要。
我们的工作填补了VA医疗保健成本数据分析的一个重要空白领域。通过组合
在现有的医疗评估需求评分(CAN)系统的HCP系统,我们将
这是朝着建立一个数据驱动的决策支持系统的最终目标取得的重要进展。
方法:该项目将开发一种新的半参数程序来预测高成本患者。
我们提出的方法结合了高维协变量和非线性协变量效应
并解决了死亡审查的挑战,这提高了准确性,
造型的灵活性。它不需要离散化成本,因此充分利用了信息
包含在成本数据中。它不需要任何参数分布假设。另一个主要
该项目的贡献是,我们提出了加权半参数分位数回归基于新的
变量选择程序,可以同时识别和估计重大风险因素,
高维数据在缺失值的存在。我们的方法会让病人
数据集,该数据集结合了通过决策支持系统提供的数据库中的所有可用成本数据
系统(DSS)国家摘录。我们将把管理成本会计系统(MCA,
以前称为决策支持系统或DSS),具有三个VA数据库,包括:VA患者
治疗文件(PTF); VA门诊文件(OCF); VA受益人识别和
记录子系统死亡文件。我们将比较新提出的方法与现有的
方法使用VA数据和模拟数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bacchus Zeliadt其他文献
Steven Bacchus Zeliadt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bacchus Zeliadt', 18)}}的其他基金
Promoting Smoking Cessation in Lung Cancer Screening through Proactive Treatment
通过积极治疗促进肺癌筛查中戒烟
- 批准号:
9293001 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Promoting Smoking Cessation in Lung Cancer Screening through Proactive Treatment
通过积极治疗促进肺癌筛查中戒烟
- 批准号:
10290892 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Semi-parametric Statistical Methods for Predicting High-cost VA Patients Using High-Dimensional Covariates
使用高维协变量预测高成本 VA 患者的半参数统计方法
- 批准号:
10186525 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Promoting Smoking Cessation in Lung Cancer Screening through Proactive Treatment
通过积极治疗促进肺癌筛查中戒烟
- 批准号:
10197054 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Integrating Smoking Cessation with Lung Cancer Screening
将戒烟与肺癌筛查相结合
- 批准号:
8866798 - 财政年份:2015
- 资助金额:
-- - 项目类别:
A novel approach to measuring costs and efficiency: Lung nodules as a case study
衡量成本和效率的新方法:以肺结节为例
- 批准号:
8677543 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Reassessing the Quality of Life Burden of Prostate Cancer Survivorship
重新评估前列腺癌幸存者的生活质量负担
- 批准号:
7278100 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Reassessing the Quality of Life Burden of Prostate Cancer Survivorship
重新评估前列腺癌幸存者的生活质量负担
- 批准号:
7484994 - 财政年份:2007
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant