Human Connectome Project for Early Psychosis
早期精神病的人类连接组项目
基本信息
- 批准号:9655380
- 负责人:
- 金额:$ 130.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-17 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAlgorithmsAttentionBehavioralBloodBostonBrainBrain DiseasesBrain MappingBrain regionCategoriesChronicChronic DiseaseClinicalCognitiveCommunitiesDNA RepositoryDataData AnalysesDetectionDiffusionDiffusion Magnetic Resonance ImagingDiseaseDropsEarly InterventionEconomic BurdenEmotionsEsthesiaFiberFunctional disorderFundingFunding OpportunitiesFutureGeneticGoalsGuidelinesHospitalsHumanImageImaging DeviceIndianaInterventionKnowledgeLaboratoriesLeadLifeLinkLongevityMeasuresMinnesotaModelingMotorNational Institute of Mental HealthNeural PathwaysPathologicPatientsPharmaceutical PreparationsPhysiologic pulsePilot ProjectsPopulationProceduresProcessProtocols documentationPsychiatryPsychotic DisordersPublic HealthQuality ControlResearchRestScanningSensitivity and SpecificitySiblingsSignal TransductionSiteStructureTechniquesTimeTranslatingTwin Multiple BirthUnited States National Institutes of HealthUniversitiesWashingtonWaterWomanaffective psychosesbehavior measurementbrain abnormalitiescell repositoryclinical research sitecohortconnectomedata acquisitiondata qualitydata sharingeffective therapygenetic analysishuman diseaseimprovedmortalityneural networkneuroimagingnovelpreventprismapsychotic symptomspublic health relevancequality assurancerelating to nervous systemsevere mental illnesstargeted treatmenttool developmenttractographywhite matter
项目摘要
DESCRIPTION (provided by applicant): The Human Connectome Project (HCP) was initiated to accelerate progress in understanding the organization of the human brain. To accomplish this goal, the original HCP Washington-University-Minnesota and MGH/Harvard-UCLA Projects have focused on acquiring and sharing data relevant to structural and functional connectivity in 1200 healthy twins and their siblings. The main aims have been to use advanced 3T imaging to develop advanced data acquisition and scanning sequences, to develop novel algorithms for post-processing of white matter fiber structure and brain connectivity, and to develop novel graphical techniques for brain connectomes. The purpose of the new funding opportunity announcement, PAR-14-281 for Connectomes Related to Human Diseases (U01), is to build upon the original HCP by extending it to the study of human brain diseases in order to acquire the same high quality data as in the original HCP, but with the goal of accelerating knowledge of brain diseases in a manner heretofore not possible. Importantly, progress has been slow and frustrating in translating knowledge of the brain to new and more effective treatments for human brain diseases such as severe mental disorders. In fact, severe mental disorders, which include psychotic disorders, are brain diseases that are not only devastating because they result in severe disruptions that occur early in life, but, for many, the course of illness is progressive, leading to chronic debilitation and early mortality. Thus the need to accelerate knowledge of dysfunctions in structural and functional brain connectivity in these disorders, and to translate this knowledge to treatment, is critical. The primary goal of the proposed "Human Connectome Project on Early Psychosis" is to acquire high quality data consistent with data acquired by the original HCP. To this end, we will acquire imaging data on Prisma 3T magnets at two sites, one in Boston and one in Indianapolis, using the HCP Lifespan Prisma protocol. This imaging protocol was developed to be of similar high quality to the original HCP, but with reduced scan time, the latter important in a psychosis cohort. We will also use behavioral measures from the HCP as well as additional measures specific to early psychosis. We will acquire blood to be stored at the Rutgers University Cell and DNA Repository (RUCDR)(Aim 1), and we will use the Washington University HCP post-processing pipeline to process imaging data (Aim 2). Additionally, we will include new imaging tools for signal drop detection, multi-tensor tractography, diffusion magnetic resonance imaging (dMRI) models, i.e., free-water imaging, and a new harmonization protocol for diffusion images (Aim 3). We will also perform, as a representative example, a study comparing brain networks of affective and non-affective psychosis groups with controls (Aim 4). The main goals are thus to acquire high quality imaging, behavioral, cognitive, and genetic data on an important cohort of early psychosis patients, in a manner consistent with the HCP, which will be made available to the research community for future studies. Such data will provide a unique opportunity to characterize the pathological substrates of early psychosis.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia.
- DOI:10.1038/s41380-022-01460-7
- 发表时间:2022-04
- 期刊:
- 影响因子:11
- 作者:Di Biase, Maria A.;Geaghan, Michael P.;Reay, William R.;Seidlitz, Jakob;Weickert, Cynthia Shannon;Pebay, Alice;Green, Melissa J.;Quide, Yann;Atkins, Joshua R.;Coleman, Michael J.;Bouix, Sylvain;Knyazhanskaya, Evdokiya E.;Lyall, Amanda E.;Pasternak, Ofer;Kubicki, Marek;Rathi, Yogesh;Visco, Andrew;Gaunnac, Megan;Lv, Jinglei;Mesholam-Gately, Raquelle, I;Lewandowski, Kathryn E.;Holt, Daphne J.;Keshavan, Matcheri S.;Pantelis, Christos;Ongur, Dost;Breier, Alan;Cairns, Murray J.;Shenton, Martha E.;Zalesky, Andrew
- 通讯作者:Zalesky, Andrew
Neuroprogression across the Early Course of Psychosis.
- DOI:10.20900/jpbs.20200002
- 发表时间:2020-01-01
- 期刊:
- 影响因子:0
- 作者:Lewandowski, Kathryn E;Bouix, Sylvain;Shenton, Martha E
- 通讯作者:Shenton, Martha E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Breier其他文献
Alan Breier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Breier', 18)}}的其他基金
Academic-Community EPINET (AC-EPINET): Mitigating Barriers to Care
学术界 EPINET (AC-EPINET):减少护理障碍
- 批准号:
10261597 - 财政年份:2020
- 资助金额:
$ 130.34万 - 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
- 批准号:
8894181 - 财政年份:2013
- 资助金额:
$ 130.34万 - 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
- 批准号:
8768828 - 财政年份:2013
- 资助金额:
$ 130.34万 - 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
- 批准号:
8914707 - 财政年份:2013
- 资助金额:
$ 130.34万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 130.34万 - 项目类别:
Continuing Grant