Human Connectome Project for Early Psychosis

早期精神病的人类连接组项目

基本信息

  • 批准号:
    9388605
  • 负责人:
  • 金额:
    $ 18.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-17 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The Human Connectome Project (HCP) was initiated to accelerate progress in understanding the organization of the human brain. To accomplish this goal, the original HCP Washington-University-Minnesota and MGH/Harvard-UCLA Projects have focused on acquiring and sharing data relevant to structural and functional connectivity in 1200 healthy twins and their siblings. The main aims have been to use advanced 3T imaging to develop advanced data acquisition and scanning sequences, to develop novel algorithms for post-processing of white matter fiber structure and brain connectivity, and to develop novel graphical techniques for brain connectomes. The purpose of the new funding opportunity announcement, PAR-14-281 for Connectomes Related to Human Diseases (U01), is to build upon the original HCP by extending it to the study of human brain diseases in order to acquire the same high quality data as in the original HCP, but with the goal of accelerating knowledge of brain diseases in a manner heretofore not possible. Importantly, progress has been slow and frustrating in translating knowledge of the brain to new and more effective treatments for human brain diseases such as severe mental disorders. In fact, severe mental disorders, which include psychotic disorders, are brain diseases that are not only devastating because they result in severe disruptions that occur early in life, but, for many, the course of illness is progressive, leading to chronic debilitation and early mortality. Thus the need to accelerate knowledge of dysfunctions in structural and functional brain connectivity in these disorders, and to translate this knowledge to treatment, is critical. The primary goal of the proposed "Human Connectome Project on Early Psychosis" is to acquire high quality data consistent with data acquired by the original HCP. To this end, we will acquire imaging data on Prisma 3T magnets at two sites, one in Boston and one in Indianapolis, using the HCP Lifespan Prisma protocol. This imaging protocol was developed to be of similar high quality to the original HCP, but with reduced scan time, the latter important in a psychosis cohort. We will also use behavioral measures from the HCP as well as additional measures specific to early psychosis. We will acquire blood to be stored at the Rutgers University Cell and DNA Repository (RUCDR)(Aim 1), and we will use the Washington University HCP post-processing pipeline to process imaging data (Aim 2). Additionally, we will include new imaging tools for signal drop detection, multi-tensor tractography, diffusion magnetic resonance imaging (dMRI) models, i.e., free-water imaging, and a new harmonization protocol for diffusion images (Aim 3). We will also perform, as a representative example, a study comparing brain networks of affective and non-affective psychosis groups with controls (Aim 4). The main goals are thus to acquire high quality imaging, behavioral, cognitive, and genetic data on an important cohort of early psychosis patients, in a manner consistent with the HCP, which will be made available to the research community for future studies. Such data will provide a unique opportunity to characterize the pathological substrates of early psychosis.
 描述(由申请人提供):人类连接组计划(HCP)的启动是为了加速了解人类大脑组织的进展。为了实现这一目标,最初的 HCP 华盛顿-明尼苏达大学和麻省总医院/哈佛大学-加州大学洛杉矶分校项目重点关注获取和共享与 1200 名健康双胞胎及其兄弟姐妹的结构和功能连接相关的数据。主要目标是使用先进的 3T 成像来开发先进的数据采集和扫描序列,开发用于白质纤维结构和大脑连接后处理的新颖算法,并开发用于大脑连接组的新颖图形技术。与人类疾病相关的连接组 (U01) 的新资助机会公告 PAR-14-281 的目的是在原始 HCP 的基础上,将其扩展到人类大脑疾病的研究,以获得与原始 HCP 相同的高质量数据,但目标是以迄今为止不可能的方式加速对脑部疾病的了解。重要的是,在将大脑知识转化为治疗严重精神障碍等人类大脑疾病的新的、更有效的疗法方面,进展缓慢且令人沮丧。事实上,包括精神障碍在内的严重精神障碍是脑部疾病,不仅具有毁灭性,因为它们会导致生命早期发生的严重混乱,而且对许多人来说,病程是进行性的,导致慢性衰弱和过早死亡。因此,需要加速了解这些疾病中结构和功能性大脑连接功能障碍,并将这些知识转化为治疗,这一点至关重要。拟议的“早期精神病人类连接组项目”的主要目标是获取与原始 HCP 获取的数据一致的高质量数据。为此,我们将使用 HCP Lifespan Prisma 协议在两个地点(一处位于波士顿,一处位于印第安纳波利斯)获取 Prisma 3T 磁体的成像数据。该成像方案的开发质量与原始 HCP 相似,但扫描时间缩短,后者在精神病队列中很重要。我们还将使用 HCP 的行为测量以及针对早期精神病的其他措施。我们将采集血液并储存在罗格斯大学细胞和 DNA 存储库 (RUCDR)(目标 1),并且我们将使用华盛顿大学 HCP 后处理管道来处理成像数据(目标 2)。此外,我们还将包括用于信号下降检测、多张量纤维束成像、扩散磁共振成像 (dMRI) 模型(即自由水成像)的新成像工具,以及新的扩散图像协调协议(目标 3)。作为一个代表性的例子,我们还将进行一项研究,将情感性和非情感性精神病组的大脑网络与对照组进行比较(目标 4)。因此,主要目标是以与 HCP 一致的方式获取早期精神病患者重要群体的高质量影像、行为、认知和遗传数据,这些数据将提供给研究界用于未来的研究。这些数据将为描述早期精神病的病理基础提供独特的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Breier其他文献

Alan Breier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Breier', 18)}}的其他基金

Academic-Community EPINET (AC-EPINET): Mitigating Barriers to Care
学术界 EPINET (AC-EPINET):减少护理障碍
  • 批准号:
    10261597
  • 财政年份:
    2020
  • 资助金额:
    $ 18.63万
  • 项目类别:
Human Connectome Project for Early Psychosis
早期精神病的人类连接组项目
  • 批准号:
    9108511
  • 财政年份:
    2016
  • 资助金额:
    $ 18.63万
  • 项目类别:
Human Connectome Project for Early Psychosis
早期精神病的人类连接组项目
  • 批准号:
    9655380
  • 财政年份:
    2016
  • 资助金额:
    $ 18.63万
  • 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
  • 批准号:
    8894181
  • 财政年份:
    2013
  • 资助金额:
    $ 18.63万
  • 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
  • 批准号:
    8768828
  • 财政年份:
    2013
  • 资助金额:
    $ 18.63万
  • 项目类别:
The Efficacy and Safety of a Selective Estrogen Receptor Beta agonist (LY500307)
选择性雌激素受体β激动剂 (LY500307) 的功效和安全性
  • 批准号:
    8914707
  • 财政年份:
    2013
  • 资助金额:
    $ 18.63万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了