Improving clinical, operational and economic outcomes related to MRSA

改善与 MRSA 相关的临床、运营和经济成果

基本信息

  • 批准号:
    8677256
  • 负责人:
  • 金额:
    $ 13.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Methicillin-resistant Staphylococcus aureus (MRSA) is the cause of many hospital-acquired infections (HAIs). In addition to the clinical burden of infection, the growing number of MRSA-colonized patients has profound implications for patient outcomes and resource utilization, which have yet to be adequately studied and addressed. MRSA-colonized patients, who are placed on contact precautions when admitted, may experience longer waiting times for hospital bed assignment and decreased interactions with providers, more preventable adverse events, as well as increased risks of inappropriate antibiotic use and dissatisfaction with care. Clinicians and policymakers may consider several strategies to address this problem, each of which has clinical and resource trade-offs. The value of applying mathematical modeling techniques, and specifically that of discrete event simulation (DES), to infection control research, has yet to be fully realized. This K01 application proposes three hypothesis-driven aims to advance the fields of infection control, hospital epidemiology and antimicrobial resistance: 1) to estimate the relationship between colonization history and antimicrobial prescribing, time-to-bed-assignment and within-hospital patient transfers, using a novel patient data warehouse; 2) to design and validate a DES model of patient flow in a tertiary care hospital; and 3) to apply the validated DES model to estimate the clinical and resource utilization outcomes of alternative infection control strategies. This innovative and multi-disciplinary study will provide clinicians and policymakers with valuable information through the quantification of the trade-offs of competing screening approaches. I am a physician at the Massachusetts General Hospital and an Instructor in Medicine at Harvard Medical School trained in infectious diseases with a doctorate in health policy/economics. I have designed and implemented two clinical research studies in the field of MRSA surveillance and discontinuation of contact precautions as well as two national surveys on the impact of contact precautions. I will use the K award to expand my current skill set to include analysis and management of large databases, mathematical modeling (specifically, discrete event simulation) and optimization methods. I will be mentored by Dr. David Hooper, an infectious disease clinician and expert in the fields of infection control and antimicrobial resistance, and Dr. Rochelle Walensky, an infectious disease clinician and mathematical modeler. I will collaborate with experts in the field of biostatistics, operations research and information systems. The targeted educational curriculum, mentoring plan and research strategy will ensure my successful transition over the period of the Award to an Independent Investigator with expertise in the use of modeling techniques to evaluate infection control approaches and implement optimal strategies in the clinical setting. I will use the valuable information gleaned from modeling to design rigorous research studies to advance the fields of infection control, hospital epidemiology and antimicrobial resistance.
描述(由申请人提供):耐甲氧西林金黄色葡萄球菌(MRSA)是许多医院获得性感染(HAI)的原因。除了感染的临床负担外,越来越多的MRSA定植患者对患者结局和资源利用具有深远的影响,这些影响尚未得到充分的研究和解决。MRSA定植的患者在入院时采取接触预防措施,可能会经历更长的等待时间来分配医院床位,减少与提供者的互动,更多可预防的不良事件,以及增加抗生素使用不当和对护理不满的风险。临床医生和政策制定者可能会考虑几种策略来解决这个问题,每一种策略都有临床和资源权衡。应用数学建模技术,特别是离散事件模拟(DES),感染控制研究的价值,尚未完全实现。该K 01申请提出了三个假设驱动的目标,以推进感染控制、医院流行病学和抗菌素耐药性领域:1)使用新型患者数据仓库估计定植史与抗菌素处方、到床时间分配和院内患者转移之间的关系; 2)设计和验证三级护理医院患者流的DES模型; 3)应用经验证的DES模型来估计替代感染控制策略的临床和资源利用结果。这项创新的多学科研究将通过量化竞争性筛查方法的权衡,为临床医生和决策者提供有价值的信息。我是马萨诸塞州总医院的一名医生,也是哈佛医学院的一名医学讲师,接受过传染病方面的培训,拥有卫生政策/经济学博士学位。我设计并实施了两项MRSA监测和停止接触预防措施领域的临床研究,以及两项关于接触预防措施影响的全国性调查。我将利用K奖来扩展我目前的技能,包括分析和管理大型数据库,数学建模(特别是离散事件模拟)和优化方法。我将接受大卫胡珀博士和罗谢尔瓦伦斯基博士的指导,前者是传染病临床医生,也是感染控制和抗菌素耐药性领域的专家,后者是传染病临床医生和数学建模师。我将与生物统计学、运筹学和信息系统领域的专家合作。有针对性的教育课程,指导计划和研究策略将确保我在获奖期间成功过渡到一名独立研究者,该研究者具有使用建模技术评估感染控制方法并在临床环境中实施最佳策略的专业知识。我将利用从建模中收集到的有价值的信息来设计严格的研究,以推进感染控制,医院流行病学和抗菌素耐药性领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erica Seiguer Shenoy其他文献

Erica Seiguer Shenoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 13.67万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 13.67万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 13.67万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 13.67万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 13.67万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 13.67万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 13.67万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 13.67万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 13.67万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 13.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了