Therapeutics for Drug-Resistant Bacteria: Myxopyronins
耐药细菌的治疗方法:粘菌素
基本信息
- 批准号:8697004
- 负责人:
- 金额:$ 121.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAnimal ModelAnti-Bacterial AgentsAntibioticsAntitubercular AgentsBacterial InfectionsBacterial RNABindingBinding SitesBiological AssayBiological AvailabilityCellsClinicalClostridium difficileComplexCysteineDNADNA-Directed RNA PolymeraseDrug KineticsDrug Resistant TuberculosisDrug resistanceDrug resistance in tuberculosisElementsEnterobacter cloacaeEnterococcus faecalisEvaluationExcretory functionExhibitsExtreme drug resistant tuberculosisFutureGenetic TranscriptionHomology ModelingIn VitroInfectionKilogramMammalian CellMediatingMetabolismModificationMulti-Drug ResistanceMycobacterium tuberculosisPreparationProceduresProductionPublic HealthPyronesRNA Polymerase IRNA Polymerase IIRNA Polymerase IIIRecombinantsResistanceRifabutinRifampinRifamycinsStaphylococcus aureusStreptococcus pneumoniaeStructureTechnology TransferTherapeuticToxic effectToxicity TestsWaterWorkanalogbasebiodefensecytotoxicitydesigndrug candidatedrug resistant bacteriaefficacy testingin vivoinhibitor/antagonistinterfaciallarge scale productionmethicillin resistant Staphylococcus aureusmouse modelpathogenradiochemicalrifapentinesafety testing
项目摘要
DESCRIPTION (provided by applicant): Myxopyronin (Myx) is an ?-pyrone antibiotic that inhibits bacterial RNA polymerase (RNAP) through interactions with the RNAP "switch region," a structural element that mediates conformational changes required for RNAP to bind and retain the DNA template in transcription. Myx does not inhibit eukaryotic RNAP I, RNAP II, or RNAP III. Myx exhibits potent antibacterial activity against Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, Enterobacter cloacae, and Clostridium difficile in culture. Myx exhibits no cross-resistance with the inhibitors of bacterial RNAP in current clinical use in therapy of bacterial infection (the rifamycin antibacterial agents, rifampin, rifapentine, and rifabutin), and exhibits no or minimal cross-resistance with other inhibitors of bacterial RNAP under evaluation for future clinical use in therapy of bacterial infection. In preliminary work, we have shown that Myx functions by inhibiting bacterial RNAP through a binding site and mechanism that are different from those of rifamycin antibacterial agents. We have determined a crystal structure of a bacterial RNAP in complex with Myx, and we have constructed homology models of pathogen RNAP in complex with Myx. The crystal structure and homology models suggest alterations to the structure of Myx that are expected (i) specifically to increase potency against M. tuberculosis RNAP, exploiting a binding-site cysteine residue present in M. tuberculosis RNAP, or (ii) generally to increase potency against a broad spectrum of bacterial RNAP, exploiting a binding-site interfacial water molecule, and other structural features, present in a broad spectrum of bacterial RNAP. In further preliminary work, we have optimized procedures for total synthesis of Myx and Myx analogs, developed procedures for preparation of recombinant pathogen RNAP, and developed procedures for fluorescent and radiochemical assays of pathogen RNAP. We propose to leverage the mechanistic and structural information, synthetic procedures, and assay procedures developed in preliminary work in order to design, synthesize, and evaluate: (i) Myx analogs with increased efficacy against multidrug-resistant and extensively-drug-resistant M. tuberculosis, and (ii) Myx analogs with increased efficacy against a broad spectrum of drug-resistant pathogens. Analogs will be evaluated for inhibition of RNAP in vitro, for antibacterial activity in culture, and for cytotoxicity against mammalian cells in culture. Analogs of high promise will be evaluated for antibacterial activity in small-animal models of infection, and analogs of highest promise will be evaluated for bioavailability, pharmacokinetics, toxicity, and ability to scale synthesis. Primary target pathogens include: M. tuberculosis H37Rv and MDR/XDR, Staphylococcus aureus MSSA and MRSA, Enterococcus faecalis VSE and VRE, Streptococcus pneumoniae, Enterobacter cloacae, and Clostridium difficile. Drug-resistant bacterial infections are a major and growing threat. The proposed work is expected to provide two classes of new drug candidates: (1) antibacterial agents effective against multi-drug-resistant and extensively-drug-resistant tuberculosis, and (2) antibacterial agents effective against a broad spectrum of drug-resistant bacterial pathogens, including both public-health-relevant bacterial pathogens and biodefense-relevant bacterial pathogens.
描述(由申请人提供):Myxopyronin (Myx) 是一种 β-吡喃酮抗生素,通过与 RNAP“转换区”相互作用来抑制细菌 RNA 聚合酶 (RNAP),RNAP“转换区”是介导 RNAP 结合和保留转录中 DNA 模板所需的构象变化的结构元件。 Myx 不抑制真核 RNAP I、RNAP II 或 RNAP III。 Myx 对培养的结核分枝杆菌、金黄色葡萄球菌、肺炎链球菌、粪肠球菌、阴沟肠杆菌和艰难梭菌表现出有效的抗菌活性。 Myx 与目前临床用于治疗细菌感染的细菌 RNAP 抑制剂(利福霉素抗菌剂、利福平、利福喷汀和利福布丁)不表现出交叉耐药性,并且与正在评估未来临床用于治疗细菌感染的其他细菌 RNAP 抑制剂不表现出交叉耐药性或具有极小的交叉耐药性。在初步工作中,我们已经证明 Myx 通过与利福霉素抗菌剂不同的结合位点和机制抑制细菌 RNAP 发挥作用。我们确定了细菌RNAP与Myx复合物的晶体结构,并构建了病原体RNAP与Myx复合物的同源模型。晶体结构和同源性模型表明对 Myx 结构的改变预期(i)利用结核分枝杆菌 RNAP 中存在的结合位点半胱氨酸残基,特异性地增加针对结核分枝杆菌 RNAP 的效力,或(ii)利用广泛存在的结合位点界面水分子和其他结构特征,一般增加针对广谱细菌 RNAP 的效力。 细菌 RNAP 谱。在进一步的前期工作中,我们优化了Myx和Myx类似物的全合成程序,开发了重组病原体RNAP的制备程序,并开发了病原体RNAP的荧光和放射化学测定程序。我们建议利用前期工作中开发的机制和结构信息、合成程序和测定程序来设计、合成和评估:(i) Myx 类似物对多重耐药和广泛耐药结核分枝杆菌具有更高的功效,以及 (ii) Myx 类似物对广谱耐药病原体具有更高的功效。将评估类似物的体外 RNAP 抑制作用、培养物中的抗菌活性以及对培养物中哺乳动物细胞的细胞毒性。将评估高前景类似物在小动物感染模型中的抗菌活性,并评估高前景类似物的生物利用度、药代动力学、毒性和规模合成能力。主要目标病原体包括:结核分枝杆菌 H37Rv 和 MDR/XDR、金黄色葡萄球菌 MSSA 和 MRSA、粪肠球菌 VSE 和 VRE、肺炎链球菌、阴沟肠杆菌和艰难梭菌。耐药细菌感染是一个主要且日益严重的威胁。拟议的工作预计将提供两类新候选药物:(1)有效对抗多重耐药和广泛耐药结核病的抗菌药物,以及(2)有效对抗广谱耐药细菌病原体的抗菌药物,包括公共卫生相关细菌病原体和生物防御相关细菌病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD H. EBRIGHT其他文献
RICHARD H. EBRIGHT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD H. EBRIGHT', 18)}}的其他基金
Therapeutics for drug-resistant bacteria: aryl myxopyronins and arylalkylcarboxamido phloroglucinols
耐药细菌的治疗方法:芳基粘菌素和芳基烷基甲酰胺基间苯三酚
- 批准号:
10394990 - 财政年份:2019
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for drug-resistant bacteria: aryl myxopyronins and arylalkylcarboxamido phloroglucinols
耐药细菌的治疗方法:芳基粘菌素和芳基烷基甲酰胺基间苯三酚
- 批准号:
10613893 - 财政年份:2019
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Pseudouridimycins
耐药细菌的治疗方法:假尿嘧啶霉素
- 批准号:
8978290 - 财政年份:2013
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Pseudouridimycins
耐药细菌的治疗方法:假尿嘧啶霉素
- 批准号:
8603843 - 财政年份:2013
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Pseudouridimycins
耐药细菌的治疗方法:假尿嘧啶霉素
- 批准号:
8782465 - 财政年份:2013
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Pseudouridimycins
耐药细菌的治疗方法:假尿嘧啶霉素
- 批准号:
8474439 - 财政年份:2013
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Myxopyronins
耐药细菌的治疗方法:粘菌素
- 批准号:
8476980 - 财政年份:2010
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Myxopyronins
耐药细菌的治疗方法:粘菌素
- 批准号:
8288777 - 财政年份:2010
- 资助金额:
$ 121.3万 - 项目类别:
Therapeutics for Drug-Resistant Bacteria: Myxopyronins
耐药细菌的治疗方法:粘菌素
- 批准号:
8105468 - 财政年份:2010
- 资助金额:
$ 121.3万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 121.3万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 121.3万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 121.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 121.3万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 121.3万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 121.3万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 121.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 121.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 121.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 121.3万 - 项目类别:
Standard Grant














{{item.name}}会员




