The Neuroregulatory Effects of Gonadal Steroids in Humans

性腺类固醇对人类的神经调节作用

基本信息

项目摘要

The protocols involved in this project are as follows: 05-M-0059, 81-M-0126, and 92-M-0174.This report includes work arising from the following protocols: NCT00026832, NCT00100360, NCT00001177, and NCT00001322. Behavioral observations show that clinically significant depressive symptoms are rare accompaniments of induced hypogonadism in these healthy premenopausal women. Additionally, neither night-time hot flushes nor disturbed sleep are sufficient to cause depressive symptoms in hypogonadal young women (reported in MH002537-23 DIRP: Psychobiology and Treatment of Perimenopausal Mood Disorders). Thus this paradigm serves as an excellent comparison group for the women with reproductive endocrine-related mood disorders who undergo identical hormone manipulations. We are pursuing our original findings that ovarian steroids modulate prefrontal cortical activity in women by augmenting older gold-standard imaging techniques (i.e., O15 PET), in which the technology is relatively stable over time and the activation task paradigms are kept relatively constant over the long-term course of these studies, with newer hypothesis-driven, cutting edge task paradigms and analytic approaches (i.e., fMRI). During N-back activation, ovarian steroids (or their absence) modulate functional connectivity between the DLPFC and hippocampus. Specifically, hormone condition had significant effects on the direction of hippocampal functional connectivity with both left and right DLPFC: the expected working memory-related negative correlation was observed during estradiol; however, during progesterone there was a positive hippocampal-right DLPFC correlation but there was no significant correlation during ovarian suppression with Lupron alone (i.e., hypogonadism). These data demonstrate that ovarian steroids modulate hippocampal-PFC functional connectivity, consistent with a role for these hormones in modulating the hippocampus at the cellular level. Interestingly, our findings indicate that progesterone and estradiol have opposite effects on this in vivo measure of hippocampal-DLPFC cooperativity, substantiating the complex influence of gonadal steroids in brain circuitry and calling for further clinical and preclinical investigation. In collaboration with Karen Berman, we examine the effects of the presence of common allelic variations in the BDNF gene and in the COMT gene in women undergoing multimodal neuroimaging procedures during each of the hormonal conditions established within the GnRH agonist-induced hypogonadism and ovarian steroid add-back protocol. We examined the impact of the interaction of BDNF Val66Met polymorphism and ovarian hormones on PET measurements of rCBF while women performed the 2-back working memory task and a 0-back sensorimotor control. We observed that BDNF genotype interacts with estradiol to impact hippocampal function during working memory. We found a significant interaction between BDNF genotype and hormone condition in right hippocampal activation (2-back vs. 0-back), and a similar trend in the left hippocampus. Post-hoc analyses revealed Met carriers showed robust estradiol-specific changes, whereas Val homozygous women showed no change in activation across hormone conditions. In Met carriers the hippocampus was abnormally activated (not deactivated) during estradiol but not during the hypogonadal state or progesterone replacement. Analyses of the 0-back and 2-back conditions done separately (an approach made possible by using PET), clearly indicate that these changes were due to neural activity during the working memory (2-back) condition and not the sensorimotor (0-back) control task. This study is the first in humans to demonstrate a BDNF genotype by hormone interaction on a cognitively-related neurophysiological response. These data suggest that the Met allele of the BDNF gene conveys an abnormal sensitivity to the presence of estradiol on hippocampal function, similar to that reported in the Met knock-in mice compared with wild type mice. Results of similar studies in women with PMDD are close to completion pending the recruitment of a sufficient number of Met carriers to repeat this analysis in these women whose affective symptoms are menstrual cycle dependent. Finally, a recent collaboration with Dr. McEwen at the Rockefeller University will explore hippocampal function on both behavioral and molecular levels in humanized met knock-in female mice. In a second analysis, we employed similar methods (i.e., the N-back task) to examine the impact of the COMT Val158Met genotype on PET measured rCBF in the PFC. COMT plays an important role in the regulation of intrasynaptic dopamine levels in the PFC and also has a high affinity for the hydroxylated metabolites of estradiol/estrone (i.e., catecholestrogens). Moreover, the activity of COMT is reported to be both sexually dimorphic and modulated by estradiol (by an estrogen response element ERE in some human tissues). In contrast to the predominance of hippocampal findings with BDNF genotype, results of the COMT by hormone interaction analysis were focused on the DLPFC, a finding that reflected estradiol-related changes in both Val and Met homozygotes. Specifically, the Met homozygotes showed a significant increase in DLPFC activation during estradiol compared with hypogonadism, whereas Val homozygotes showed the opposite pattern with significantly lower activation during estradiol but not hypogonadism or progesterone-replaced conditions). DLPFC activation in heterozygotes was intermediate between the two homozygous groups. These data are consistent with observations that both COMT genotype and stage of the menstrual cycle influence working memory-related activations in the PFC and clearly define a COMT genotype by hormone interaction. Thus, the effects of genotype on PFC function in women cannot be inferred in the absence of knowledge about reproductive state. The mechanisms underlying this observation remain to be defined but are consistent with estradiol impacting PFC dopamine tuning through effects on DA synthesis or metabolism with attendant alterations in DLPFC efficiency. Investigations of the relevance of this genotype by hormone interaction on PFC function to women with PMDD are currently underway. Finally, despite well-established sex differences in several cognitive domains (e.g., visuospatial ability), few studies in humans have distinguished between those sex differences evident in the presence of circulating sex hormones and those sex differences present in the relative absence of circulating levels of estradiol and testosterone, respectively (i.e., true sex differences reflecting organizational differences in brain function occurring independent of differences in current exposure to estradiol or testosterone). We evaluated cognitive performance in healthy men and women before (eugonadal) and during GnRH agonist-induced hypogonadism. The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained despite the short-term suppression of gonadal function in both men and women. Significant main effects of sex (but not of either hormone condition or sex by hormone condition) were observed: men performed better than women on visuospatial tasks (mental rotation, line orientation, Money Road Map, complex figure drawing, embedded figures, and maze completion) during both eugonadism and hypogonadism. No significant main or interactive effects of sex or hormone condition were observed in any other cognitive test domain. These findings suggest that, in humans, sex differences in visuospatial performance do not require the presence of circulating sex steroids and, therefore, are not simply reflections of sex differences in the relative exposures to estradiol and testosterone.
本项目涉及的协议为:05-M-0059、81-M-0126、92-M-0174。本报告包括NCT00026832、NCT00100360、NCT00001177和NCT00001322协议产生的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Schmidt其他文献

Peter Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Schmidt', 18)}}的其他基金

Endocrine and Neurobiologic Events Accompanying Puberty
青春期伴随的内分泌和神经生物学事件
  • 批准号:
    8556991
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Psychobiology And Treatment Of Perimenopausal Mood Disorders
心理生物学和围绝经期情绪障碍的治疗
  • 批准号:
    7969304
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
The Neuroregulatory Effects of Gonadal Steroids in Humans
性腺类固醇对人类的神经调节作用
  • 批准号:
    10011366
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Reproductive Endocrine Related Mood Disorders-Differential Sensitivity
生殖内分泌相关情绪障碍-敏感性差异
  • 批准号:
    10266604
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Reproductive Endocrine Related Mood Disorders-Differential Sensitivity
生殖内分泌相关情绪障碍-敏感性差异
  • 批准号:
    7969428
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Reproductive Endocrine Related Mood Disorders-Differential Sensitivity
生殖内分泌相关情绪障碍-敏感性差异
  • 批准号:
    10929821
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Reproductive Endocrine Related Mood Disorders-Differential Sensitivity
生殖内分泌相关情绪障碍-敏感性差异
  • 批准号:
    8342156
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Psychobiology And Treatment Of Perimenopausal Mood Disorders
心理生物学和围绝经期情绪障碍的治疗
  • 批准号:
    8939945
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Endocrine and Neurobiologic Events Accompanying Puberty
青春期伴随的内分泌和神经生物学事件
  • 批准号:
    8940012
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:
Reproductive Endocrine Related Mood Disorders-Differential Sensitivity
生殖内分泌相关情绪障碍-敏感性差异
  • 批准号:
    9152113
  • 财政年份:
  • 资助金额:
    $ 68.89万
  • 项目类别:

相似海外基金

Perinatal Affective Symptoms, Neuroactive Steroids, and GABA Receptor Plasticity in Women of Color
有色人种女性的围产期情感症状、神经活性类固醇和 GABA 受体可塑性
  • 批准号:
    10572847
  • 财政年份:
    2023
  • 资助金额:
    $ 68.89万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10406131
  • 财政年份:
    2020
  • 资助金额:
    $ 68.89万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10542659
  • 财政年份:
    2020
  • 资助金额:
    $ 68.89万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10320061
  • 财政年份:
    2020
  • 资助金额:
    $ 68.89万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10115131
  • 财政年份:
    2020
  • 资助金额:
    $ 68.89万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    9912649
  • 财政年份:
    2020
  • 资助金额:
    $ 68.89万
  • 项目类别:
Visceral neural circuits linking childhood threat and deprivation with stress physiology and affective symptoms in a transdiagnostic sample using high-field personalized brain mapping
使用高场个性化大脑映射在跨诊断样本中将童年威胁和剥夺与应激生理学和情感症状联系起来的内脏神经回路
  • 批准号:
    9980497
  • 财政年份:
    2019
  • 资助金额:
    $ 68.89万
  • 项目类别:
Visceral neural circuits linking childhood threat and deprivation with stress physiology and affective symptoms in a transdiagnostic sample using high-field personalized brain mapping
使用高场个性化大脑映射在跨诊断样本中将童年威胁和剥夺与应激生理学和情感症状联系起来的内脏神经回路
  • 批准号:
    9796278
  • 财政年份:
    2019
  • 资助金额:
    $ 68.89万
  • 项目类别:
Visceral neural circuits linking childhood threat and deprivation with stress physiology and affective symptoms in a transdiagnostic sample using high-field personalized brain mapping
使用高场个性化大脑映射在跨诊断样本中将童年威胁和剥夺与应激生理学和情感症状联系起来的内脏神经回路
  • 批准号:
    10665711
  • 财政年份:
    2019
  • 资助金额:
    $ 68.89万
  • 项目类别:
Visceral neural circuits linking childhood threat and deprivation with stress physiology and affective symptoms in a transdiagnostic sample using high-field personalized brain mapping
使用高场个性化大脑映射在跨诊断样本中将童年威胁和剥夺与应激生理学和情感症状联系起来的内脏神经回路
  • 批准号:
    10436264
  • 财政年份:
    2019
  • 资助金额:
    $ 68.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了