Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics

使用键盘动力学对情感症状和认知进行不引人注目的监测

基本信息

  • 批准号:
    10406131
  • 负责人:
  • 金额:
    $ 22.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The goal of the parent project “Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics (UnMASCK)” is to develop digital biomarkers derived from smartphone typing dynamics and motor kinematics which can be used to predict alterations in brain network properties associated with cognitive dysfunction and prospective changes in clinical mood symptoms. The digital data is unobtrusively collected via a novel platform “BiAffect” in a transdiagnostic sample of subjects with mood disorders and health controls. The BiAffect platform collects metadata related to typing behaviors such as keypress types, timestamps, and accelerometry and uploads these data to the study server. Subject specific summary metrics are calculated locally and presented to the user via a dashboard. With this supplement our goal is to update the software infrastructure of the BiAffect platform in order to facilitate interoperability, collaboration with other researchers, and integration with the smartphone hardware and operating system upgrades. To achieve these goals, we plan to refactor the BiAffect codebase to enable more robust multi-developer collaboration and version control. We also plan to create standardized data processing pipelines to support collaborations with researchers who may have varying levels of capacity for data science and engineering.
母项目“情感症状和认知的非侵入性监测”的目标 使用键盘动力学(UnMASCK)”是开发数字生物标志物, 智能手机打字动力学和电机运动学,可用于预测 与认知功能障碍相关的脑网络特性以及 临床情绪症状数字数据是通过一个新颖的平台不引人注目地收集的 “BiAffect”在患有情绪障碍和健康对照的受试者的跨诊断样本中。的 BiAffect平台收集与键入行为相关的元数据,例如按键类型, 时间戳和加速度测量,并将这些数据上传到研究服务器。受试者特定 摘要度量在本地计算并经由仪表板呈现给用户。 通过此补充,我们的目标是更新BiAffect平台的软件基础设施, 为了促进互操作性,与其他研究人员的合作,以及与 智能手机硬件和操作系统升级。为了实现这些目标,我们计划 重构BiAffect代码库,以实现更强大的多开发人员协作和版本 控制我们还计划创建标准化的数据处理管道来支持协作 与可能具有不同数据科学和工程能力水平的研究人员一起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olusola A. Ajilore其他文献

When ChatGPT Met RDoC: Leveraging Artificial Intelligence to Bridge the Gap Between Data and Prognosis
当ChatGPT遇上研究领域标准(RDoC):利用人工智能弥合数据与预后之间的差距
  • DOI:
    10.1016/j.biopsych.2024.09.020
  • 发表时间:
    2024-12-15
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Olusola A. Ajilore
  • 通讯作者:
    Olusola A. Ajilore
Altered Effective Connectivity During Threat Anticipation in Individuals With Alcohol Use Disorder
酒精使用障碍患者在威胁预期期间的有效连接改变

Olusola A. Ajilore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olusola A. Ajilore', 18)}}的其他基金

Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10542659
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
3/3-Recurrence markers, cognitive burden and neurobiological homeostasis in late-life depression
3/3-晚年抑郁症的复发标记、认知负担和神经生物学稳态
  • 批准号:
    10532208
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Study of a PST-Trained Voice-Enabled Artificial Intelligence Counselor (SPEAC) for Adults with Emotional Distress
针对患有情绪困扰的成年人的经过 PST 培训的语音人工智能咨询师 (SPEAC) 的研究
  • 批准号:
    10671735
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Study of a PST-Trained Voice-Enabled Artificial Intelligence Counselor (SPEAC) for Adults with Emotional Distress
针对患有情绪困扰的成年人的经过 PST 培训的语音人工智能咨询师 (SPEAC) 的研究
  • 批准号:
    10611145
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10320061
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    10115131
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Unobtrusive Monitoring of Affective Symptoms and Cognition using Keyboard Dynamics
使用键盘动力学对情感症状和认知进行不引人注目的监测
  • 批准号:
    9912649
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
Study of a PST-Trained Voice-Enabled Artificial Intelligence Counselor (SPEAC) for Adults with Emotional Distress
针对患有情绪困扰的成年人的经过 PST 培训的语音人工智能咨询师 (SPEAC) 的研究
  • 批准号:
    10031359
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
3/3-Recurrence markers, cognitive burden and neurobiological homeostasis in late-life depression
3/3-晚年抑郁症的复发标记、认知负担和神经生物学稳态
  • 批准号:
    10078636
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:
3/3-Recurrence markers, cognitive burden and neurobiological homeostasis in late-life depression
3/3-晚年抑郁症的复发标记、认知负担和神经生物学稳态
  • 批准号:
    10304162
  • 财政年份:
    2020
  • 资助金额:
    $ 22.93万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 22.93万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 22.93万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 22.93万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 22.93万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 22.93万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了