Biomechanics of Blast Injury
爆炸伤的生物力学
基本信息
- 批准号:8808857
- 负责人:
- 金额:$ 19.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcroleinAcuteAreaAwarenessBase of the BrainBehavioralBiochemicalBiologicalBiological MarkersBiomechanicsBlast CellBlast InjuriesBlood - brain barrier anatomyBlood VesselsBrainBrain InjuriesBrain regionCaringChemicalsCollectionComputer SimulationConflict (Psychology)DataDevelopmentDiagnosticDisputesDoseEarly treatmentElementsEthicsEvaluationEventExplosionGenerationsHarvestHeadHealthcareHumanImpairmentIncidenceIndustrial AccidentsInflammationInflammatoryInjuryIntracranial PressureLabelLeadLightLinkLiteratureLocationMeasurementMeasuresMechanicsMediatingMediator of activation proteinMental HealthMilitary PersonnelModelingNatureNerve DegenerationNeurodegenerative DisordersNeuronal DysfunctionNeuronsNeurotoxinsPathologicPathologyPathway interactionsPatientsPropertyProviderQuality of lifeRattusReportingResearchResourcesRiskRodentRodent ModelSecondary toSeveritiesShockSoldierStressStructureSymptomsTargeted ResearchTechniquesTechnologyTherapeuticTherapeutic InterventionTimeTissuesTraumatic Brain InjuryUp-RegulationUrineValidationWireless Technologybasebrain tissuecraniumexperiencehigh riskimprovedin vivoinjuredinsightloved onesmigrationnanoparticleneuropsychiatrynew therapeutic targetnovelnovel diagnosticspressurepreventprognosticpublic health relevancerelating to nervous systemresearch studyscreeningsensortherapeutic developmenttherapeutic targetwasting
项目摘要
DESCRIPTION (provided by applicant): Blast-induced traumatic brain injuries (bTBIs) result from explosive events and have been labeled as the "signature injury" of modern warfare. Many reports show compelling evidence that, even in the absence of noticeable symptoms, bTBI can cause long-term brain damage leading to dire mental health and/or neurodegenerative consequences. The often subclinical nature of this "silent killer" is particularly alarming, as it precludes early treatment, missing the ideal therapeutic window to prevent damage progression and the resulting pathological sequelae. A multi-modal analysis is proposed to identify the mechanisms linking bTBI- induced mechanical damage to interceding biological mechanisms which may lead to development of post- bTBI pathologies. With a validated rodent model of bTBI combined with the power of computational modeling and cutting-edge, nanoparticle-based sensor technology, we aim to gain greater insight into the link between the biomechanics of bTBI, structural damage in the brain, and subsequent biological mediators of continued post-bTBI damage. Our hypothesis is that rapid, dynamic intracranial pressure changes produce deformation gradients in the brain that are injurious to neurons and brain microvasculature, initiating the pathologic mechanisms leading to post-bTBI neuronal degeneration and dysfunction. We present preliminary evidence of a novel sensor's capacity to for the first time determine brain deformation in real time during blast injury in vivo. These measurements will guide generation of calibrated, validated whole-brain computational stress/strain models leading to increased understanding of the forces experienced by the brain during bTBI. In addition, we demonstrate evidence of bTBI-induced blood-brain barrier compromise indicative of microvascular damage as well as upregulation of acrolein, a potent neurotoxin, marker of neuronal damage, and pro-inflammatory agent. Acrolein is elevated for at least five days post-bTBI in both brain tissue and urine, suggesting it may be responsible for mediating ongoing brain damage long after the initial injury as a result of structural damage to neurons and microvasculature during blast exposure. Its sustained elevation and capacity for noninvasive measurement identifying it as a potentially viable screening biomarker and treatment target for subclinical bTBI. By exploring the regional relationships between bTBI-induced neuronal and microvascular damage, acrolein elevation, and brain deformation through a unique, multi-modal approach, we aim to unveil new mechanisms linking bTBI mechanical damage to secondary biological mediators of sustained injury. Ultimately, this research seeks heightened understanding of bTBI and new diagnostic and therapeutic targets in hopes of improved quality of life and reduced healthcare burdens for bTBI patients, loved ones, and care providers.
描述(申请人提供):爆炸导致的创伤性脑损伤(BTBI)是由爆炸事件引起的,已被贴上现代战争的“标志性损伤”的标签。许多报告显示,令人信服的证据表明,即使在没有明显症状的情况下,bTBI也会导致长期的脑损伤,导致可怕的心理健康和/或神经退行性后果。这种“沉默杀手”的亚临床性质尤其令人担忧,因为它排除了早期治疗的可能性,错过了防止损害进展和由此产生的病理后遗症的理想治疗窗口。我们建议用多模式分析来确定bTBI所致的机械损伤与可能导致bTBI后病理发展的生物学机制之间的联系。通过一个经过验证的bTBI啮齿动物模型,结合计算建模的力量和基于纳米颗粒的尖端传感器技术,我们的目标是更深入地了解bTBI的生物力学、大脑结构损伤和bTBI后持续损伤的后续生物介质之间的联系。我们的假设是,快速、动态的颅内压变化在大脑中产生变形梯度,对神经元和脑微血管造成损害,启动了导致bTBI后神经元退化和功能障碍的病理机制。我们提出的初步证据表明,一种新型传感器首次能够在体内爆炸伤期间实时确定脑变形。这些测量将指导产生校准的、经过验证的全脑计算应力/应变模型,从而增加对bTBI期间大脑所经历的力的理解。此外,我们证明了bTBI诱导的血脑屏障受损的证据表明微血管损伤以及丙烯醛的上调,丙烯醛是一种强有力的神经毒素,神经元损伤的标志,以及促炎剂。在bTBI后至少五天,脑组织和尿液中的丙烯醛都会升高,这表明它可能是在最初的损伤后很长一段时间内,由于冲击波暴露对神经元和微血管系统的结构性破坏而导致的持续脑损伤的原因。它的持续升高和非侵入性测量能力使其成为亚临床bTBI潜在可行的筛查生物标志物和治疗靶点。通过一种独特的、多模式的方法探索bTBI诱导的神经元和微血管损伤、丙烯醛升高和脑变形之间的区域性关系,我们的目标是揭示bTBI机械损伤与持续损伤的二级生物介质之间的新机制。最终,这项研究寻求提高对bTBI和新的诊断和治疗目标的理解,希望改善bTBI患者、亲人和护理人员的生活质量,减轻医疗负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RIYI SHI其他文献
RIYI SHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RIYI SHI', 18)}}的其他基金
A novel enzymatic mechanism for removing neurotoxic aldehydes after rodent spinal cord injury
啮齿动物脊髓损伤后去除神经毒性醛的新酶机制
- 批准号:
10016831 - 财政年份:2019
- 资助金额:
$ 19.38万 - 项目类别:
NERVE REPAIR BY SYNTHETIC AND BIOLOGICAL POLYMERS
通过合成和生物聚合物修复神经
- 批准号:
6546664 - 财政年份:2002
- 资助金额:
$ 19.38万 - 项目类别:
NERVE REPAIR BY SYNTHETIC AND BIOLOGICAL POLYMERS
通过合成和生物聚合物修复神经
- 批准号:
6603395 - 财政年份:2002
- 资助金额:
$ 19.38万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Operating Grants