Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
基本信息
- 批准号:8761476
- 负责人:
- 金额:$ 35.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcetyleneActive SitesAddressAmazeAmmoniaAnabolismBehaviorBindingBiochemistryBioinorganic ChemistryBiologicalBiologyChemicalsCleaved cellCommunitiesComplement component C4aComplexComplicationCouplingCrystallizationCrystallographyDataElectrochemistryElectron Nuclear Double ResonanceElectron TransportElectronicsEnvironmentEnzymesGoalsHydrazineIronKineticsKnowledgeLeadLearningLeftLifeLinkModelingMolybdenumNitrogenNitrogen FixationNitrogenaseNuclearPathway interactionsProcessProteinsReactionResearchRoentgen RaysRoleSiteSolventsSpecific qualifier valueSpectrum AnalysisStructureSulfidesSulfurSupport GroupsTestingTimeTranscendWorkabsorptionadductanalogbiological systemscarbenecatalystchemical synthesiscofactorcold temperatureelectron nuclear double resonance spectroscopyfascinatefunctional groupinsightnoveloxidationplanetary Atmospherepublic health relevancesmall molecule
项目摘要
DESCRIPTION (provided by applicant): In nitrogenases, iron-sulfur clusters transcend their usual role as electron transfer sites, by performing the multielectron reduction of N2 to NH3. This enzyme thus shows the amazing catalytic potential of iron-sulfur clusters in biological
systems. In addition to its unique ability to reduce N2, the FeMoco active site of nitrogenase has a carbide (C4-), a feature that is new in biological chemistry. Intermediates in the biosynthesis and catalytic mechanism are likely to have hydride, carbene, N2, and hydrazine moieties, which are unknown in other enzymes. Learning the relationship between the structure and function of nitrogenase is aided by synthetic molecules that have specifi similarities to the FeMoco. Though they are simplified, they make it possible to test structural
features one at a time without the complication of the other cofactors and protein. Our guiding hypothesis is that carbide holds and releases low-coordinate iron, which can form Fe-N2 and Fe-H intermediates. In this hypothesis, sulfide donors in the FeMoco give reactive high-spin electronic configurations. We will test these ideas using synthetic iron clustes with combinations of sulfide, nitride, carbene and carbide bridges. Synthetic compounds with these features will show the feasibility of the proposed functional groups on iron-sulfur clusters,
establish the spectroscopic signatures of these functional groups, and show whether their behavior is consistent with the models for FeMoco biosynthesis and mechanism. In the proposed research, we will create synthetic iron-containing compounds with each of the following novel functionalities: unsaturated iron-sulfur clusters, iron-sulfide-hydride clusers, high- spin iron-carbene and carbide clusters, and N2-cleaving iron complexes. The isolation and characterization of these compounds is made possible by the use of bulky supporting groups. The bulky groups also facilitate crystallization, and enhance solubilit in solvents that can be used at low temperature. Crystallography, kinetic studies, electrochemistry, and reactivity will be used to elucidate the atomic-level detail of the elementary steps of small-molecule binding and reduction. The synthetic complexes will be evaluated by ENDOR, infrared, Raman, M¿ssbauer, and X-ray absorption spectroscopies to provide a link between the structures of novel model compounds and the known data for nitrogenases. We anticipate that the proposed work will lead to valuable precedents for reaction pathways in nitrogenases. Although much is known about the mechanisms of multielectron oxidation reactions in bioinorganic chemistry, the knowledge about multielectron biological reductions lags far behind, and there is particular need for research on small-molecule reactions of iron-sulfur clusters. Therefore, there is fundamental importance in learning how the iron-sulfide cluster in nitrogenase binds and transforms small molecules that are essential for life. In the long run, understanding the mechanisms of small-molecule reduction in biological systems may also lead to new catalysts for use in chemical synthesis, giving an even broader impact.
描述(由申请人提供):在固氮酶中,铁硫簇通过进行N2到NH3的多电子还原而超越了它们作为电子转移位点的通常作用。因此,这种酶显示了铁硫簇在生物学中的惊人催化潜力。
系统.除了其独特的还原N2的能力之外,固氮酶的FeMoco活性位点具有碳化物(C4-),这是生物化学中的新特征。在生物合成和催化机制的中间体可能有氢化物,卡宾,N2和肼部分,这是未知的其他酶。了解固氮酶的结构和功能之间的关系是通过与FeMoco具有特定相似性的合成分子来帮助的。虽然它们是简化的,但它们使测试结构成为可能。
特征在于一次一个,而没有其他辅因子和蛋白质的复杂化。我们的指导假设是,碳化物持有和释放低配位铁,可以形成Fe-N2和Fe-H中间体。在这个假设中,FeMoco中的硫化物供体给出反应性高自旋电子构型。我们将使用硫化物、氮化物、卡宾和碳化物桥的合成铁簇来测试这些想法。具有这些特征的合成化合物将显示所提出的铁硫簇合物上的官能团的可行性,
建立这些官能团的光谱特征,并显示它们的行为是否与FeMoco生物合成和机制的模型一致。在拟议的研究中,我们将创建具有以下每一种新功能的合成含铁化合物:不饱和铁-硫簇合物、铁-硫化物-氢化物簇合物、高自旋铁-卡宾和碳化物簇合物以及N2-裂解铁络合物。这些化合物的分离和表征通过使用大体积的支持基团而成为可能。大体积基团还促进结晶,并增强在可在低温下使用的溶剂中的溶解度。晶体学,动力学研究,电化学和反应性将被用来阐明小分子结合和还原的基本步骤的原子级细节。将通过ENDOR、红外、拉曼、穆斯堡尔和X射线吸收光谱对合成的复合物进行评价,以提供新型模型化合物的结构与固氮酶的已知数据之间的联系。我们预计,拟议的工作将导致有价值的先例固氮酶的反应途径。虽然在生物无机化学中对多电子氧化反应的机理已经有了很多的了解,但对多电子生物还原反应的认识还远远落后,特别是对铁硫簇合物小分子反应的研究还很有必要。因此,了解固氮酶中的硫化铁簇如何结合和转化生命所必需的小分子具有根本的重要性。从长远来看,了解生物系统中小分子还原的机制也可能导致用于化学合成的新催化剂,从而产生更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK L HOLLAND其他文献
PATRICK L HOLLAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK L HOLLAND', 18)}}的其他基金
Mechanistically guided improvement in radical alkene coupling by base metal catalysts
贱金属催化剂对自由基烯烃偶联的机械引导改进
- 批准号:
9906258 - 财政年份:2019
- 资助金额:
$ 35.46万 - 项目类别:
Mechanistically guided improvement in radical alkene coupling by base metal catalysts
贱金属催化剂对自由基烯烃偶联的机械引导改进
- 批准号:
10371894 - 财政年份:2019
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7901205 - 财政年份:2009
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
10218187 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
8465238 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
9751869 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
9312826 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7390716 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
6778988 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
Low-Coordinate Synthetic Models for Nitrogenase Activity
固氮酶活性的低坐标合成模型
- 批准号:
7218021 - 财政年份:2004
- 资助金额:
$ 35.46万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 35.46万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




