Dynamics and molecular mechanism of synaptic connectivity change during learning
学习过程中突触连接变化的动力学和分子机制
基本信息
- 批准号:8745867
- 负责人:
- 金额:$ 44.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-05 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectApicalAxonBiologyBoxingBrainDataDefectDendritesDendritic SpinesDevelopmentDissectionExcitatory SynapseFoundationsFutureGenerationsGoalsHumanImageImmunofluorescence ImmunologicIndividualInvestigationKnowledgeLabelLearningLifeMeasuresMemoryMental disordersMicroscopyModificationMolecularMolecular ProfilingMorphologyMotorMotor CortexMusNeuronal PlasticityNeuronsPathologyPathway interactionsPatternPopulationProcessProteinsProteomicsProxyResearchScanning Electron MicroscopySiteSpecificityStagingStructureSynapsesSynaptic plasticityTestingThalamic structureTrainingTranslational ResearchVertebral columncell typeexperiencehippocampal pyramidal neuronimaging modalityin vivoin vivo imaginginformation processinginnovationinsightmolecular dynamicsmolecular markermotor learningmotor skill learningnervous system disorderneural circuitnovelpostsynapticpreferencepresynapticprotein expressionprotein profilingpublic health relevancesynaptogenesistomographytooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): Synapses are the sites of information processing in the mammalian brain. While generation and persistence of synapses during learning make them potential substrate for circuit modification and memory storage, the molecular mechanisms underlying synaptic structural changes and synapse diversity remain to be elucidated. Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the brain. Using an innovative combination of in vivo two-photon imaging and retrospective Array Tomography, the goals of this proposal are to determine the molecular composition and local connectivity of learning-related synapses, and to reveal principles of circuit remodeling during learning. We propose three specific aims. Aim 1 examines the protein expression of individual spines (postsynaptic structures of excitatory synapses) during the process of synaptogenesis. Such expression patterns will be compared with those of preexisting stable spines to determine the molecular signature of new spines formed during learning. Aim 2 identifies the presynaptic partners for learning-associated new spines, and dissects how local circuits "reweigh" or "rewire" during learning. Aim 3 investigates how spine dynamics of pyramidal neurons from different cortical layers respond to motor learning, and determines if new spines formed during learning receive unique presynaptic inputs. Successful completion of the research will not only provide critical insights into the biology of synapse formation and diversity, but also offer neuroscientists a novel tool box to highlight new connections formed in a brain's recent past. Discovering how synapses remodel during learning will build a foundation for future investigation of how synaptic structure/function is altered by pathologies associated with learning defects.
描述(由申请人提供):突触是哺乳动物大脑中信息处理的部位。虽然在学习过程中突触的产生和持久性使它们成为电路修饰和记忆存储的潜在底物,但突触结构变化和突触多样性的分子机制仍有待阐明。树突棘是大脑中大多数兴奋性突触的突触后部位。使用体内双光子成像和回顾性阵列断层扫描的创新组合,该提案的目标是确定学习相关突触的分子组成和局部连接,并揭示学习过程中电路重塑的原理。我们提出三个具体目标。目的1研究兴奋性突触的突触后结构棘在突触发生过程中的蛋白表达。将这些表达模式与先前存在的稳定棘进行比较,以确定在学习过程中形成的新棘的分子特征。目标2确定了与学习相关的新棘的突触前伙伴,并剖析了局部回路在学习过程中如何“重新加权”或“重新布线”。目的3研究来自不同皮层的锥体神经元的棘动力学如何响应运动学习,并确定在学习过程中形成的新棘是否接受独特的突触前输入。这项研究的成功完成不仅将为突触形成和多样性的生物学提供重要的见解,还将为神经科学家提供一个新的工具箱,以突出大脑最近形成的新连接。发现学习过程中突触如何重塑将为未来研究突触结构/功能如何被与学习缺陷相关的病理改变奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zuo其他文献
Yi Zuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zuo', 18)}}的其他基金
Explore the gut-immune-brain axis mechanisms underlying perinatal penicillin exposure-induced sensory processing defects
探索围产期青霉素暴露引起的感觉处理缺陷的肠道-免疫-大脑轴机制
- 批准号:
10260402 - 财政年份:2020
- 资助金额:
$ 44.28万 - 项目类别:
Contribution of astrocytes to the Fragile X Syndrome
星形胶质细胞对脆性 X 综合征的影响
- 批准号:
9349581 - 财政年份:2016
- 资助金额:
$ 44.28万 - 项目类别:
Contribution of astrocytes to the Fragile X Syndrome
星形胶质细胞对脆性 X 综合征的影响
- 批准号:
9237067 - 财政年份:2016
- 资助金额:
$ 44.28万 - 项目类别:
Development of synaptic abnormality in fragile X mice
脆性 X 小鼠突触异常的发展
- 批准号:
8446275 - 财政年份:2012
- 资助金额:
$ 44.28万 - 项目类别:
Development of synaptic abnormality in fragile X mice
脆性 X 小鼠突触异常的发展
- 批准号:
8644928 - 财政年份:2012
- 资助金额:
$ 44.28万 - 项目类别:
Development of synaptic abnormality in fragile X mice
脆性 X 小鼠突触异常的发展
- 批准号:
8290802 - 财政年份:2012
- 资助金额:
$ 44.28万 - 项目类别:
Development of synaptic abnormality in fragile X mice
脆性 X 小鼠突触异常的发展
- 批准号:
8824567 - 财政年份:2012
- 资助金额:
$ 44.28万 - 项目类别:
Development of synaptic abnormality in fragile X mice
脆性 X 小鼠突触异常的发展
- 批准号:
8275856 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
The role of glial cells in synapse remodeling in aging living mice
胶质细胞在衰老活小鼠突触重塑中的作用
- 批准号:
8037025 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
Neuromuscular synapse remodeling by glial cells in aging mice
衰老小鼠神经胶质细胞的神经肌肉突触重塑
- 批准号:
8234016 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
相似国自然基金
FGF8通过Ras/MEK/ERK信号通路调控apical ES结构影响精子生成的机制研究
- 批准号:81801519
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
RGPIN-2018-06073 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
RGPIN-2018-06073 - 财政年份:2021
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
RGPIN-2018-06073 - 财政年份:2020
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
RGPIN-2018-06073 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
RGPIN-2018-06073 - 财政年份:2018
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
401987-2013 - 财政年份:2017
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
401987-2013 - 财政年份:2016
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
401987-2013 - 财政年份:2015
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
401987-2013 - 财政年份:2014
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Molecular crosstalk between apical-basal polarity and planar cell polarity in axon guidance
轴突引导中顶端-基底极性和平面细胞极性之间的分子串扰
- 批准号:
401987-2013 - 财政年份:2013
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual