Nonparametric Methods for Clinical Predictive Model in Pharmacogenomics Research
药物基因组学研究中临床预测模型的非参数方法
基本信息
- 批准号:8511260
- 负责人:
- 金额:$ 18.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-06 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiomedical ResearchBortezomibClinicalClinical TrialsCommunitiesComplexComputer softwareComputing MethodologiesDataData AnalysesData SetDimensionsDiseaseGene ExpressionGenesGeneticGenetic VariationGenomeGenomicsIndividualLanguageMalignant NeoplasmsMethodsModelingMolecular ProfilingMulticenter StudiesMultiple MyelomaPatientsPharmaceutical PreparationsPharmacogenomicsPublic HealthResearchResearch PersonnelSample SizeSingle Nucleotide PolymorphismSliceStatistical MethodsTechniquesTo specifyVariantWeightWorkWritingbasecomputerized toolsdesigndisease phenotypedrug efficacypredictive modelingpublic health relevanceresponsetreatment strategyuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Nonparametric Variable Selection and Dimension Reduction for Predictive Models of Clinical Response in Pharmacogenomics Research Whole genome gene expression information have been used in pharmacogenomics research to correlate patients' gene expression profiles with a drug's efficacy. For many complex diseases, e.g., cancers, it is anticipated that gene expression profiles will provide predictive models, more
precise than those based on standard clinical features, to define patient-specific treatment strategies. However, finding gene expression variations that affect drug response is complicated and challenging. Computational difficulties include that the whole genome gene expression data are high dimensional and their relationships to drug response would be nonlinear. Therefore, one can no longer rely on existing statistical and computational methods to adequately analyze the data. The long-term objective of the proposed project is to develop statistical and computational methods (for analysis of high dimensional but low sample size data and apply the methods in pharmacogenomics research. The short-term objective is to specifically develop nonparametric variable selection and dimension reduction techniques for predictive models of clinical response on gene expression data.) Three specific aims will be pursued: 1) Develop nonparametric vari- able selection approaches using LOESS (locally weighted scatterplot smoothing), which does not assume linear or any other specific forms of predictive models for clinical response; 2) Ex- tend Sliced Inverse Regression (SIR) to dimension reduction problems when the dimension is much larger than the sample size, as the case in pharmacogenomics; 3) Apply the proposed methods in pharmacogenomics (studies, whose data are available in Gene Expression Omnibus (GEO) DataSets, ://www.ncbi.nlm.nih.gov/gds . The proposed variable selection and dimension reduction methods are general to other regression problems, when the regression functions do not have specific forms and the data are big in terms of very high dimensional predictors but relatively low sample size.) Software to implement analysis will use the statistical package R language and will be fully documented for easy use by the biomedical research community.
描述(由申请人提供):药物基因组学研究中临床反应预测模型的非参数变量选择和降维全基因组基因表达信息已被用于药物基因组学研究,以将患者基因表达谱与药物疗效联系起来。对于许多复杂的疾病,如癌症,预计基因表达谱将提供预测模型,更多
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Xie其他文献
Jun Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Systems Lipidomics tools and resources for biomedical research; LIPID MAPS.
用于生物医学研究的系统脂质组学工具和资源;
- 批准号:
MR/Y000064/1 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Research Grant
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881457 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881508 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2883713 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
Training Biomedical Research Teams for Rigor and Reproducibility in Data Science
培训生物医学研究团队以确保数据科学的严谨性和可重复性
- 批准号:
10723223 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881331 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881518 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
Combining Separation, Digestion, and Ionization on a Mass Spectrometry Cartridge to Enable Biomedical Research on Proteoforms
在质谱柱上结合分离、消化和电离,以实现蛋白质形式的生物医学研究
- 批准号:
10637225 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别: