The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
基本信息
- 批准号:10851461
- 负责人:
- 金额:$ 147.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-09-17
- 项目状态:未结题
- 来源:
- 关键词:AddressBig DataBiologicalBiological ModelsBiologyBiomedical ResearchCommunitiesComputer softwareComputersCoupledDataData ProvenanceData SetData SourcesDiseaseEducation and OutreachEducational process of instructingEngineeringEnsureFoundationsFundingGenerationsGenesGeneticGraphInfrastructureKnowledgeKnowledge ExtractionKnowledge PortalLibrariesManualsMapsMetabolic DiseasesMethodsModelingNational Center for Advancing Translational SciencesNational Human Genome Research InstituteNational Institute of Diabetes and Digestive and Kidney DiseasesPersonsProceduresPropertyProviderRegulatory ElementResearch PersonnelResourcesScienceScientistSecureServicesStatistical ComputingTestingThinkingTrainingTrustUncertaintyUnited States National Institutes of HealthVariantVisualizationWorkbioinformatics pipelinecell typecloud baseddata ecosystemdata qualitydata resourcedata to knowledgedesigndiverse dataexperiencegenome resourcegenomic datainformation organizationknowledge curationknowledge graphknowledge of resultsnoveloutreachpreferencetooluser-friendlyweb portalworking group
项目摘要
Abstract
Making NIH Common Fund (CF) datasets FAIR is but the first step in realizing their potential
within the “big data” revolution. Science progresses through the accumulation of knowledge,
which achieves a wide reach only if it is accessible to a diverse spectrum of researchers. While
computer scientists have made substantial strides in modeling knowledge within “knowledge
graphs” (KGs), non-computational scientists can find it hard to interpret the graph-based
reasoning tools and visualizations that accompany KGs because such tools use logical
reasoning that does not account for scientific context or uncertainty and can produce a plethora
of scientifically invalid inferences.
Our CFDE KC will aim to present scientifically valid knowledge produced by CF projects. We will
represent this knowledge as a KG, compliant with existing CFDE and external knowledge
curation efforts. But we will focus on scientific validity through both (a) careful knowledge
extraction, by ensuring that each edge in the KG is either a primary experimental finding or the
result of an expert-applied analysis, and (b) careful knowledge presentation, by building a portal
that de-emphasizes general-purpose graph traversal in favor of single-purpose visualizations.
To implement this KC, we will draw from our experience managing four large-scale NIH-funded
projects that have faced similar challenges in related settings. First, our work on Terra provides
a foundation for securely storing biomedical data and making it available through cloud-based
workspaces. Second, our work on the Common Metabolic Diseases Knowledge Portal provides
a means to distill data into knowledge through expert-designed analyses that produce “summary
representations”, which are then presented through simple visualizations or multi-step
prescriptive workflows. Third, our work on the A2FKP provides experience tailoring knowledge
extraction and presentation to a variety of communities with different cultures and preferences.
Finally, our work on the Biomedical Translator provides experience developing and complying
with standards for knowledge representation and exchange.
In specific aim 1, we will coordinate working groups of CFDE and external investigators to
review the knowledge across CF projects and propose how to extract and represent it within the
KC. In specific aim 2, we will work with CF DCCs to define summary representations of their
data, provide them with software to make these summary representations available to us, and
regularly “pull” and integrate these summaries within a KG compliant with Translator standards.
In specific aim 3, we will use the software UI/UX and search infrastructure developed for the
CMDKP and A2FKP to build a knowledge portal that enables a diverse spectrum of scientists to
visualize and search CF data. In specific aim 4, we will combine our and the CF DCC’s prior
education and outreach strategies to publicize the portal and educate people in its use. Finally,
in specific aim 5, we will interface with other CFDE centers to build a combined Resource Portal
and form partnerships with external resources to amplify the reach of our KC.
Together, these aims will produce a CFDE KC that will unlock the full potential of CF resources
through an emphasis on scientific validity, enabling scientists of all levels of expertise to
understand, trust, and build upon them.
摘要
使NIH共同基金(CF)数据集公平只是实现其潜力的第一步
在“大数据”革命中。科学是通过知识的积累而进步的,
只有当它能被各种各样的研究人员所使用时,它才能达到广泛的范围。而
计算机科学家在“知识内”知识建模方面取得了长足的进步
图”(KG),非计算科学家可能会发现很难解释基于图的
推理工具和可视化,因为这些工具使用逻辑
不考虑科学背景或不确定性的推理,可能产生过多的
科学上无效的推论
我们的CFDE KC旨在展示CF项目产生的科学有效的知识。我们将
将此知识表示为KG,符合现有CFDE和外部知识
策展工作。但我们将通过以下两个方面来关注科学有效性:(a)仔细了解
提取,通过确保KG中的每个边缘是主要的实验发现或
专家应用分析的结果,以及(B)通过建立门户网站,
它不强调通用的图遍历,而支持单一目的的可视化。
为了实施这一知识中心,我们将借鉴我们管理四个大型NIH资助的
在相关环境中面临类似挑战的项目。首先,我们在Terra上的工作提供了
安全存储生物医学数据并通过基于云的
- 是的其次,我们在常见代谢疾病知识门户网站上的工作提供了
一种通过专家设计的分析将数据提炼成知识的方法,
表示”,然后通过简单的可视化或多步骤呈现
规范的工作流程。第三,我们在A2 FKP方面的工作提供了经验定制知识
提取并呈现给具有不同文化和偏好的各种社区。
最后,我们在生物医学翻译器上的工作提供了开发和遵守的经验
知识表示和交换的标准。
在具体目标1中,我们将协调CFDE和外部调查人员的工作组,
审查CF项目中的知识,并提出如何在
KC公司。在具体目标2中,我们将与CF DCC合作,定义其
数据,为他们提供软件,使我们可以使用这些摘要表示,以及
定期“拉”并将这些摘要整合到符合Translator标准的KG中。
在具体的目标3中,我们将使用软件UI/UX和搜索基础设施,
CMDKP和A2 FKP将建立一个知识门户,使各种科学家能够
可视化和搜索CF数据。在具体目标4中,我们将结合联合收割机和CF DCC的优先级
教育和外联战略,以宣传门户网站并教育人们使用门户网站。最后,
在具体目标5中,我们将与其他CFDE中心对接,建立一个综合资源门户网站
并与外部资源建立合作伙伴关系,以扩大我们的KC的覆盖范围。
这些目标将共同产生一个CFDE KC,释放CF资源的全部潜力
通过强调科学有效性,使各级专业知识的科学家能够
理解,信任,并在此基础上建立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noel P Burtt其他文献
Noel P Burtt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noel P Burtt', 18)}}的其他基金
The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
- 批准号:
10673866 - 财政年份:2021
- 资助金额:
$ 147.34万 - 项目类别:
The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
- 批准号:
10090265 - 财政年份:2021
- 资助金额:
$ 147.34万 - 项目类别:
The next iteration of the AMP-T2D Knowledge Portal
AMP-T2D 知识门户的下一个迭代
- 批准号:
10839598 - 财政年份:2015
- 资助金额:
$ 147.34万 - 项目类别:
相似国自然基金
生物大数据驱动的新病毒发现研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于全球组学大数据的蚊虫共生病毒群
体生态结构及其宏观驱动因素研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
生物大数据智能解析与转化应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
地形异质性对糖尿病患者足底生物力学特征的影响及大数据驱动的糖尿病足风险预测模型构建-多中心研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于大数据和人工智能的新生儿疾病致病机制及预测模型构建
- 批准号:2025JJ70490
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于浙江省居民健康大数据的社区老年人群 功能风险指数构建
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微生物组学大数据研发可改善2型糖尿病症状的特异性益生菌合剂
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自主层次结构学习研究及其在多组学大数据中的应用
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
空气污染与栖息地变化对生物多样性的影响:基于生态学大数据的经济研究
- 批准号:72303006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肿瘤大数据的ecDNA检测方法与消化系统肿瘤免疫治疗生物标志物研究
- 批准号:82303953
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2022
- 资助金额:
$ 147.34万 - 项目类别:
Discovery Grants Program - Individual
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 147.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2021
- 资助金额:
$ 147.34万 - 项目类别:
Discovery Grants Program - Individual
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
DGECR-2020-00052 - 财政年份:2020
- 资助金额:
$ 147.34万 - 项目类别:
Discovery Launch Supplement
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2020
- 资助金额:
$ 147.34万 - 项目类别:
Discovery Grants Program - Individual
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761735 - 财政年份:2018
- 资助金额:
$ 147.34万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761792 - 财政年份:2018
- 资助金额:
$ 147.34万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761945 - 财政年份:2018
- 资助金额:
$ 147.34万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761839 - 财政年份:2018
- 资助金额:
$ 147.34万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
- 批准号:
1447711 - 财政年份:2014
- 资助金额:
$ 147.34万 - 项目类别:
Standard Grant