Multimethod Mediation Analysis in Prevention Research

预防研究中的多方法中介分析

基本信息

  • 批准号:
    8600254
  • 负责人:
  • 金额:
    $ 23.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The field of prevention relies heavily on understanding causal processes as a way of identifying potential targets for prevention and how interventions operate to achieve their effects. Statistical mediation analysis is a critical tool fr prevention research because it helps explain how an independent variable exerts its effect on a dependent variable. Furthermore, the use of multiple methods and/or multiple raters to assess the constructs of interest in prevention science is greatly valued, because multimethod studies are more informative than single method designs and allow for the assessment of convergent validity and method specificity. Despite the fact that many recent studies have used multi-method measurement designs to study mediated effects, many of the approaches used to integrate multiple methods in the statistical analyses have significant theoretical and empirical limitations. The current research aims to address this issue by integrating modern methods of statistical mediation analysis with modern approaches of multitrait-multimethod (MTMM) methodology. In particular, we propose to 1) examine the relative statistical performance of approaches currently used by prevention scientists (Aim 1) and 2) develop and evaluate new multimethod mediation models with latent variables that properly account for the types of methods used in the study (Aim 2). In line with Eid et al. (2008), we distinguish between interchangeable and structurally different methods in this regard and propose to develop models for each type of method as well as the combination of both. Simulation studies will be used to evaluate the performance of the new models in absolute terms as well as in relation to other, already established approaches. Based on our findings from the simulation studies in Aim 1 and Aim 2, we will apply the best performing MM mediation models to real prevention datasets (Aim 3). Finally, the ultimate goal of this research is to disseminate knowledge to applied researchers about how to most appropriately analyze mediated effects in the context of a multimethod measurement design (Aim 4). The successful fulfillment of the aims proposed in this project will impact public health because it will help to clarify the meaning of mediating effects in prevention studies, which is a critical element in designing effective preventive interventions.
描述(由申请人提供):预防领域在很大程度上依赖于理解因果过程,作为确定潜在预防目标和干预措施如何运作以实现其效果的一种方式。统计中介分析是预防研究的重要工具,因为它有助于解释自变量如何对因变量产生影响。此外,使用多种方法和/或多个评分者来评估预防科学中感兴趣的结构是非常有价值的,因为多方法研究比单一方法设计提供更多信息,并允许评估收敛效度和方法特异性。尽管最近的许多研究使用了多方法测量设计来研究中介效应,但许多用于在统计分析中整合多种方法的方法具有显着的理论和经验局限性。当前的研究旨在通过将现代统计中介分析方法与现代多特征-多方法(MTMM)方法相结合来解决这一问题。特别是,我们建议1)检查预防科学家目前使用的方法的相对统计性能(目标1)和2)开发和评估新的多方法中介模型,这些模型具有潜在变量,可以适当地解释研究中使用的方法类型(目标2)。根据Eid等人(2008)的研究,我们在这方面区分了可互换和结构不同的方法,并建议为每种方法以及两者的结合开发模型。模拟研究将用于评价新模型的绝对性能以及与其他已建立的方法的关系。基于Aim 1和Aim 2中模拟研究的发现,我们将把表现最好的MM中介模型应用于真实的预防数据集(Aim 3)。最后,本研究的最终目标是向应用研究人员传播有关如何在多方法测量设计的背景下最适当地分析中介效应的知识(目的4)。成功实现这一项目提出的目标将影响公共卫生,因为它将有助于澄清中介作用在预防中的意义

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTIAN GEISER其他文献

CHRISTIAN GEISER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTIAN GEISER', 18)}}的其他基金

Multimethod Mediation Analysis in Prevention Research
预防研究中的多方法中介分析
  • 批准号:
    8421362
  • 财政年份:
    2013
  • 资助金额:
    $ 23.63万
  • 项目类别:
Multimethod Mediation Analysis in Prevention Research
预防研究中的多方法中介分析
  • 批准号:
    8685630
  • 财政年份:
    2013
  • 资助金额:
    $ 23.63万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了