Probing the mechanistic basis for T cell fate decisions (R01)
探讨T细胞命运决定的机制基础(R01)
基本信息
- 批准号:8702920
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-10 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntigen-Presenting CellsAntigensArchitectureAttenuatedAutoantigensBiochemicalBiological AssayBiological ModelsCD28 geneCD3 AntigensCD4 Positive T LymphocytesCD80 geneCancer VaccinesCell divisionCellsCellular biologyComplexDataDevelopmentDimerizationDisabled PersonsEnergy TransferEnzymesEventFluorescence MicroscopyGoalsHealthHumanImageImmuneImmune responseImmunityImmunologic SurveillanceIn VitroIndividualInfectionKnowledgeLifeLigandsMacromolecular ComplexesMediatingMembraneMemoryMolecularMolecular Biology TechniquesMolecular TargetPeptide/MHC ComplexPhosphotransferasesPositioning AttributeProcessPublishingReagentReceptor SignalingRecruitment ActivityReportingSideSignal TransductionStructureSumSurfaceSurface AntigensSurveysSystemT-Cell DevelopmentT-Cell ReceptorT-LymphocyteTertiary Protein StructureTestingTransplantationVaccinesWorkbasebiophysical propertiescytokinedesignextracellularhandicapping conditionin vivoinsightmouse modelmutantnovelpathogenpreventresearch studyresponsesensorspatial relationship
项目摘要
DESCRIPTION (provided by applicant): The TCR-CD3 complex, CD4, and CD28 are vital checkpoint molecules that allow T cells to survey for antigens and activation induced molecules on the surfaces of antigen presenting cells (APCs). They then transfer this antigen- and APC-specific information to the T cell's intracellular signaling apparatus. Ultimately, this informatio directs the T cell fate decisions that drive development, activation, differentiation, and the execution of effector functions. The fundamental importance of these molecules to immune surveillance and human health has resulted in several studies regarding their structure and function over the past 25+ years. As a result, much is now known about their individual structures, their interactions with their respective ligands in isolation, and the signaling cascads that result from these interactions. But, we have yet to determine how they fit and work together as components of the molecular machinery that drives T cell fate decisions and this has prevented us from understanding how this molecular machinery, as a whole, executes its functions. Further, this lack of knowledge has handicapped our ability to strategically target this
molecular machinery with reagents designed to either enhance responses to vaccines, tumor, or pathogens, or to attenuate responses to transplants or auto-antigens. Our goal is to deconstruct, understand, and ultimately manipulate the form and function of this complex macromolecular machine. To this end, we will: 1) determine how antigen-specific information is relayed across the membrane by the TCR to the intracellular signaling domains of the CD3 subunits; 2) determine how these signaling subunits are positioned in close proximity with the enzymes that modify them; and 3) determine how the surfaces that stabilize the architecture of this higher order machinery influence CD4+ T cell fate decisions in vivo. We have developed a novel experimental platform that combines classic biochemical and molecular biology techniques with modern polycistronic retroviral systems, kinase- based dimerization assays, and live cell fluorescent video imaging (including the use of total internal reflection fluorescence microscopy (TIRFM) and Forster Resonance Energy Transfer (FRET)), to take a highly controlled reductionist approach to addressing Aim 1 and 2. In addition, we are building novel mouse model systems to accomplish Aim 3. Specifically we will study the surfaces that we have already identified as mediating TCR- CD3 complex stability and TCR dimerization to determine how these interactions, which are at the core of the higher-order macromolecular machinery that transfers pMHC-specific information from the outside to the inside of a cell, influence T cell fate
decisions in vivo. Altogether, these experiments will yield important insights into the molecular mechanisms that underlie CD4+ T cell fate decisions and identify potential targets for the development of translational immune-modulating reagents.
描述(由申请人提供):TCR-CD3复合物,CD4和CD28是重要的检查点分子,可让T细胞调查抗原和激活诱导抗原存在细胞表面上的分子(APC)。然后,他们将此抗原和APC特异性信息传递到T细胞的细胞内信号传导设备。最终,此信息将指导T细胞命运的决策,这些决策推动了效应子功能的开发,激活,分化和执行。这些分子对免疫监测和人类健康的基本重要性导致了过去25年以上的几项有关其结构和功能的研究。结果,现在已经知道了他们的各个结构,与各自的配体的相互作用,以及这些相互作用导致的信号传导cascads。但是,我们尚未确定它们如何作为分子机械的组成部分的拟合和合作,从而驱动T细胞命运决策,这使我们无法理解该分子机械(整体上)如何执行其功能。此外,这种缺乏知识使我们有能力从战略上瞄准这一点
具有旨在增强对疫苗,肿瘤或病原体的反应的试剂的分子机械,或者减弱对移植或自动抗原的反应。我们的目标是解构,理解和最终操纵这款复杂的大分子机器的形式和功能。为此,我们将:1)确定如何通过TCR在整个膜上中继到CD3亚基的细胞内信号传导结构域的抗原特异性信息; 2)确定如何将这些信号亚基定位在与修改它们的酶紧邻的位置; 3)确定稳定这种高阶机械结构的表面如何影响体内CD4+ T细胞命运的决策。我们已经开发了一个新型的实验平台,该平台将经典的生物化学和分子生物学技术与现代多种逆转录病毒系统,基于激酶的二聚化测定和实时细胞荧光视频成像(包括使用总内部反射荧光显微镜(TIRFM)(TIRFM)和Forster Conconcons Encors(FRET)以及高度对方法进行重新构建,还可以重新构建,将其除外。实现目标3的新型鼠标模型系统。具体而言,我们将研究我们已经确定的表面介导TCR- CD3复杂稳定性和TCR二聚化,以确定这些相互作用是如何在高阶的大分子机械上核心,这些相互作用的核心是传输的pmhc特异性信息,从
体内决定。总的来说,这些实验将对CD4+ T细胞命运决定的分子机制产生重要的见解,并确定潜在的靶标,以开发转化免疫调节试剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael S Kuhns其他文献
Michael S Kuhns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael S Kuhns', 18)}}的其他基金
Engineering 2nd generation 5MCARs to monitor and treat Type-I Diabetes
设计第二代 5MCAR 来监测和治疗 I 型糖尿病
- 批准号:
10598106 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Engineering and Testing of Biomimetic Stimulators for Therapeutic Applications
用于治疗应用的仿生刺激器的工程和测试
- 批准号:
10705808 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Adapting 5MCAR technology for the treatment of peripheral T cell lymphoma
采用5MCAR技术治疗外周T细胞淋巴瘤
- 批准号:
10351121 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Engineering and Testing of Biomimetic Stimulators for Therapeutic Applications
用于治疗应用的仿生刺激器的工程和测试
- 批准号:
10570359 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Engineering 2nd generation 5MCARs to monitor and treat Type-I Diabetes
设计第二代 5MCAR 来监测和治疗 I 型糖尿病
- 批准号:
10435625 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Adapting 5MCAR technology for the treatment of peripheral T cell lymphoma
采用5MCAR技术治疗外周T细胞淋巴瘤
- 批准号:
10543167 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Inducing Tolerance with 5-Module chimeric Antigen Receptor (5MCAR) T Cells
使用 5 模块嵌合抗原受体 (5MCAR) T 细胞诱导耐受
- 批准号:
10247395 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Development of Cellular Tools and Techniques to Identify Low Affinity T Cells
开发识别低亲和力 T 细胞的细胞工具和技术
- 批准号:
10259675 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Development of Cellular Tools and Techniques to Identify Low Affinity T Cells
开发识别低亲和力 T 细胞的细胞工具和技术
- 批准号:
9974912 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Probing the mechanistic basis for T cell fate decisions (R01)
探讨T细胞命运决定的机制基础(R01)
- 批准号:
10088367 - 财政年份:2012
- 资助金额:
$ 37.88万 - 项目类别:
相似国自然基金
具有温度/pH双重响应和甘露糖受体靶向功能的微凝胶疫苗
- 批准号:51903233
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于DNA自组装技术的人工抗原呈递细胞设计构建及其免疫功能评价
- 批准号:21907073
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
高同型半胱氨酸血症放大高脂引起动脉粥样硬化早期发病--管周脂肪的抗原呈递作用
- 批准号:91439206
- 批准年份:2014
- 资助金额:270.0 万元
- 项目类别:重大研究计划
内淋巴囊上皮细胞在内耳免疫调控作用中的分子机制研究
- 批准号:81371084
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
基于抗原呈递细胞表型变化的I型糖尿病特异性防治研究
- 批准号:30571732
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Mechanism of immune response to muscle-directed AAV gene transfer
肌肉定向 AAV 基因转移的免疫反应机制
- 批准号:
10717750 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Role of CD8 T cell-mediated Pathology in Globoid Cell Leukodystrophy
CD8 T 细胞介导的病理学在球状细胞脑白质营养不良中的作用
- 批准号:
10634808 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别: