The architecture and development of a sensory processing circuit for smell
气味感觉处理电路的架构和开发
基本信息
- 批准号:8678898
- 负责人:
- 金额:$ 47.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAmygdaloid structureAnatomyAnimalsArchitectureAutistic DisorderAxonBehaviorBehavioralBioinformaticsBiological AssayBiological ModelsBrainBrain regionCharacteristicsCognitionColorCuesDefectDendritesDetectionDevelopmentDimensionsDiseaseDistantElectrophysiology (science)ExhibitsEyeFailureFrightFutureGenerationsGenesGeneticGenetic ProgrammingGoalsHearingHumanIndividualInstinctLabelLightLinkMaintenanceMapsMethodsMusMutationNeurodegenerative DisordersNeuronsOdorsOlfactory CortexOlfactory LearningOlfactory tubercleOutputPlayProcessPropertyProteinsResolutionRoleSchizophreniaSensorySensory ProcessSisterSiteSmell PerceptionStereotypingSynapsesSystemTechniquesTestingTetanus ToxinTouch sensationVibrissaeViralVisionbasedevelopmental geneticsexperiencelearned behaviornervous system disorderneural circuitneuropsychiatrynovelolfactory bulbreconstructionrelating to nervous systemresponsestereotypytool
项目摘要
DESCRIPTION (provided by applicant): Human cognition and behavior depend on the proper assembly and maintenance of neural circuits and genes that imperil these processes are increasingly linked to autism, schizophrenia and other neurological disorders. Neural activity and genetic programs contribute to different aspects of neural circuit development and architecture. In some sensory circuits, such as vision, hearing and touch, neurons with related response properties are organized in a stereotypic manner to form "maps" of sensory information. In these systems, genes and neural activity play complementary roles in forming and maintaining these maps. Less is known about the developmental principles that help to establish finer scale neural connectivity, particularly in processing regions that lack obvious spatial maps. Here, we propose to examine the impact of neural activity on circuits involved in the sense of smell. In particular, we will study the circuits formed by the mitral and tufted (MT) neurons, which receive inputs from defined groups of sensory neurons and transmit this information to multiple functionally distinct cortical processing centers responsible for olfactory
learning and innate behaviors such as attraction or fear. MT neurons are important to study for two reasons. First, we have developed new viral tracing and neuron reconstruction techniques to label sets of "sister" MT neurons that respond to the same odors in the same animal and map their projections in three dimensions. This affords us a sensitive method to investigate fine scale
wiring mechanisms. Second, individual MT neurons innervate multiple cortical targets, which each seems to posses a characteristic architecture. This allows us to simultaneously assess the impact of activity on multiple circuit architectures that are formed by different branches of the same MT axon. The central hypothesis of this proposal is that activity in MT neurons differentially regulates distinct aspects of olfactory circuit architecture. To test this hypothesi we propose three specific aims. First, we will determine whether projections of "sister" mitral and tufted (MT) neurons are stereotyped in cortical processing centers involved in innate behaviors. Second, we will synaptically silence olfactory sensory neurons and identify the features of olfactory bulb and cortical circuits that depend on sensory input. Third, we will synaptically silence MT neurons and identify aspects of local and cortical circuit architecture that depend on MT activity. Results of these studies will identify unknown activity-dependent mechanisms of olfactory neural circuit formation and predict which features of circuit architecture are likely tobe controlled by genetic programs. Defining these circuits with high resolution will facilitate future
studies to identify genes implicated in building specific neural circuits and to assess the functional consequence of mutations linked to human neurodevelopmental or neurodegenerative diseases.
描述(由申请人提供):人类的认知和行为取决于神经回路的正确组装和维护,危及这些过程的基因越来越多地与自闭症,精神分裂症和其他神经系统疾病有关。神经活动和遗传程序对神经回路发育和结构的不同方面做出贡献。在一些感觉回路中,如视觉、听觉和触觉,具有相关反应特性的神经元以刻板的方式组织起来,形成感觉信息的“地图”。在这些系统中,基因和神经活动在形成和维持这些地图方面发挥着互补作用。关于有助于建立更精细尺度的神经连接的发展原则,特别是在缺乏明显空间地图的处理区域,我们所知甚少。在这里,我们建议检查神经活动对嗅觉回路的影响。特别是,我们将研究由二尖瓣和簇状(MT)神经元形成的回路,这些神经元从定义的感觉神经元组接收输入,并将此信息传递到负责嗅觉的多个功能不同的皮层处理中心。
学习和天生的行为,如吸引力或恐惧。MT神经元的研究有两个重要原因。首先,我们开发了新的病毒追踪和神经元重建技术,以标记在同一动物中对相同气味作出反应的“姐妹”MT神经元,并在三维中绘制它们的投影。这为研究微细氧化皮提供了一种灵敏的方法
布线机制第二,单个MT神经元支配多个皮质靶点,每个靶点似乎都有一个特征性的结构。这使我们能够同时评估活动对由同一MT轴突的不同分支形成的多个电路架构的影响。这个建议的中心假设是,MT神经元的活动差异调节嗅觉回路架构的不同方面。为了验证这一假设,我们提出了三个具体目标。首先,我们将确定是否预测的“姐妹”二尖瓣和簇状(MT)神经元是刻板的皮质处理中心参与先天行为。其次,我们将通过突触沉默嗅觉感觉神经元,并确定依赖于感觉输入的嗅球和皮层回路的特征。第三,我们将突触沉默MT神经元,并确定方面的本地和皮层电路架构,依赖于MT活动。这些研究的结果将确定嗅觉神经回路形成的未知活动依赖机制,并预测回路结构的哪些特征可能受遗传程序控制。以高分辨率定义这些电路将有助于未来
这些研究旨在确定与构建特定神经回路有关的基因,并评估与人类神经发育或神经退行性疾病相关的突变的功能后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin Kay Baldwin其他文献
Kristin Kay Baldwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin Kay Baldwin', 18)}}的其他基金
Contributions of cell type and exosome signaling to prodromal synaptic and circuit changes in Alzheimer's Disease models
细胞类型和外泌体信号传导对阿尔茨海默病模型中前驱期突触和回路变化的贡献
- 批准号:
10540117 - 财政年份:2022
- 资助金额:
$ 47.38万 - 项目类别:
Defining a transcriptional periodic table of the human brain using reprogramming
使用重编程定义人脑的转录周期表
- 批准号:
10263622 - 财政年份:2020
- 资助金额:
$ 47.38万 - 项目类别:
Defining a transcriptional periodic table of the human brain using reprogramming
使用重编程定义人脑的转录周期表
- 批准号:
9163516 - 财政年份:2016
- 资助金额:
$ 47.38万 - 项目类别:
Genome-wide investigation of somatic mutation in the developing and aging brain
发育和衰老大脑体细胞突变的全基因组研究
- 批准号:
8762213 - 财政年份:2014
- 资助金额:
$ 47.38万 - 项目类别:
Genome-wide investigation of somatic mutation in the developing and aging brain
发育和衰老大脑体细胞突变的全基因组研究
- 批准号:
9105769 - 财政年份:2014
- 资助金额:
$ 47.38万 - 项目类别:
The architecture and development of a sensory processing circuit for smell
气味感觉处理电路的架构和开发
- 批准号:
9088401 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The architecture and development of a sensory processing circuit for smell
气味感觉处理电路的架构和开发
- 批准号:
8350354 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The architecture and development of a sensory processing circuit for smell
气味感觉处理电路的架构和开发
- 批准号:
8485576 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The architecture and development of a sensory processing circuit for smell
气味感觉处理电路的架构和开发
- 批准号:
8871710 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
Elucidating cardiovascular phenotaypes employing genome editing of iPS cells
利用 iPS 细胞基因组编辑阐明心血管表型
- 批准号:
8689147 - 财政年份:2011
- 资助金额:
$ 47.38万 - 项目类别: