Statistical Methods for Whole-Brain Connectivety Networks
全脑连接网络的统计方法
基本信息
- 批准号:8725971
- 负责人:
- 金额:$ 15.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgingAreaAwardBase of the BrainBiologicalBrainBrain DiseasesBrain imagingBrain regionClinicalCognition DisordersCognitiveComplexComputing MethodologiesDataData AnalysesDependenceDevelopmentDevelopment PlansDiagnosticDiseaseDrug abuseDyslexiaEducational workshopElementsFoundationsFunctional Magnetic Resonance ImagingFunctional disorderFutureGleanGoalsGraphHumanImageImage AnalysisInterdisciplinary StudyKnowledgeMentorsMethodologyMethodsModelingNetwork-basedNeurobiologyNeurosciencesOutcomePathway AnalysisPopulationPopulation StudyPositioning AttributePropertyResearchResearch ActivityResearch PersonnelResearch TrainingResolutionSimulateSiteSourceStatistical MethodsStatistical ModelsStructureSubstance abuse problemSystemTechniquesTrainingTraining ActivityUnited States National Institutes of HealthVariantWeightaging brainbasebrain researchcareercareer developmentcomputational neuroscienceexperienceimprovedinnovationinsightmembermultitasknetwork modelsneuroimagingnovelprognosticskillsstatisticssymposiumtool
项目摘要
DESCRIPTION (provided by applicant): My goal for the K25 award is to establish myself as an independent neuroimaging researcher with expertise in brain network analysis and an integral member of multidisciplinary research teams devoted to addressing diseases of the brain. Attaining these objectives will require focused didactic training and research guidance. Research We will develop new methodology to improve whole-brain connectivity analyses of normal and abnormal brain function. The launching of the Human Connectome Project by the NIH in 2009 underscores the importance of whole-brain connectivity analyses. Appropriately conducting these analyses is paramount in our understanding normal brain function as well as alterations due to conditions such as aging, dyslexia, and substance abuse. Before we can glean useful information from functional brain network differences in these conditions, methods need to be developed in order to permit 1) assessing several network properties simultaneously while also accounting for the complex dependence structure of the networks; 2) making predictions about the presence and strength (weight) of connections between brain regions based on disease status; 3) determining whether task related changes in brain networks are associated with clinical outcomes. The novel methods proposed here will address these needs, providing more appropriate techniques for the emerging area of whole-brain connectivity analysis. This research, along with my proposed training experiences and strong mentoring team, will facilitate my progression toward becoming an independent neuroimaging researcher with expertise in brain network analysis and enable me to make unique contributions to brain research. Training The proposed training plan consists of four elements: 1) a didactic component aimed at establishing a basic foundation in computational neuroscience and image analysis; 2) career guidance in methodological development and collaborative neuroimaging research through planned on and off-site mentoring by neuroscientists and network and neuroimaging statisticians; 3) conducting innovative research utilizing the gained neuroscientific and image analytic knowledge and previous statistical training; and 4) participating in the exchange of ideas in statistics and the neurosciences through conference and workshop attendance. The planned training activities will focus on deepening my understanding of the brain as a complex system, enabling me to reasonably model and evaluate this system within its biological context. The combination of my knowledge in network-based brain imaging statistics, computational neuroscience, and image analysis will be a valuable asset that will not be confined to a single brain disorder. While the data analyses proposed here will focus on aging and brain degeneration, dyslexia, and substance abuse, the skills and knowledge that I will gain will position me to collaborate with investigators that study a broad range of clinical brain disorders.
描述(由申请者提供):我的K25奖项的目标是使自己成为一名独立的神经成像研究人员,拥有脑网络分析方面的专业知识,并成为致力于解决大脑疾病的多学科研究团队的重要成员。要实现这些目标,需要有针对性的教学培训和研究指导。研究我们将开发新的方法来改进对正常和异常脑功能的全脑连通性分析。2009年,美国国立卫生研究院启动了人类连接组项目,突显了全脑连接性分析的重要性。适当地进行这些分析对于我们理解正常的大脑功能以及由于衰老、阅读障碍和药物滥用等条件而引起的变化至关重要。在我们能够从这些条件下的脑网络功能差异中收集有用的信息之前,需要开发方法,以便1)同时评估几个网络属性,同时考虑到网络的复杂依赖结构;2)基于疾病状态预测大脑区域之间连接的存在和强度(权重);3)确定脑网络中与任务相关的变化是否与临床结果相关。这里提出的新方法将满足这些需求,为新兴的全脑连通性分析领域提供更合适的技术。这项研究,加上我建议的培训经验和强大的指导团队,将有助于我成为一名拥有脑网络分析专业知识的独立神经成像研究人员,并使我能够为脑研究做出独特的贡献。培训拟议的培训计划包括四个要素:1)教学部分,旨在建立计算神经科学和图像分析的基本基础;2)通过神经科学家以及网络和神经成像统计师有计划的现场和非现场指导,在方法开发和协作神经成像研究方面提供职业指导;3)利用获得的神经科学和图像分析知识以及以前的统计培训进行创新研究;以及4)通过出席会议和讲习班,参与统计和神经科学方面的思想交流。计划中的培训活动将侧重于加深我对大脑作为一个复杂系统的理解,使我能够在其生物学背景下合理地模拟和评估这个系统。我在基于网络的大脑成像统计学、计算神经科学和图像分析方面的知识相结合,将是一项宝贵的资产,不会局限于单一的大脑疾病。虽然这里提出的数据分析将专注于衰老和大脑退化、阅读障碍和药物滥用,但我将获得的技能和知识将使我能够与研究广泛临床大脑疾病的研究人员合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean L Simpson其他文献
Sean L Simpson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean L Simpson', 18)}}的其他基金
Analytical Tools for Complex Brain Networks: Fusing Novel Statistical Methods and Network Science to Understand Brain Function
复杂大脑网络的分析工具:融合新颖的统计方法和网络科学来理解大脑功能
- 批准号:
9516278 - 财政年份:2018
- 资助金额:
$ 15.91万 - 项目类别:
Statistical Methods for Whole-Brain Connectivety Networks
全脑连接网络的统计方法
- 批准号:
8531240 - 财政年份:2012
- 资助金额:
$ 15.91万 - 项目类别:
Statistical Methods for Whole-Brain Connectivety Networks
全脑连接网络的统计方法
- 批准号:
8372822 - 财政年份:2012
- 资助金额:
$ 15.91万 - 项目类别:
Statistical Methods for Whole-Brain Connectivety Networks
全脑连接网络的统计方法
- 批准号:
9134452 - 财政年份:2012
- 资助金额:
$ 15.91万 - 项目类别:
Statistical Methods for Whole-Brain Connectivety Networks
全脑连接网络的统计方法
- 批准号:
8916717 - 财政年份:2012
- 资助金额:
$ 15.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.91万 - 项目类别:
Research Grant