Efficient double hybrid density functional theory algorithms for conformational a

构象α的高效双杂化密度泛函理论算法

基本信息

  • 批准号:
    8714619
  • 负责人:
  • 金额:
    $ 48.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Q-Chem is a state-of-the-art commercial computational quantum chemistry program that has aided tens of thousands users in their modeling of molecular processes in a wide range of disciplines, including biology, chemistry, and materials science. In quantum chemistry, density functional theory (DFT) and second order Moller-Plesset theory (MP2) are already heavily used in the development of molecular mechanics force fields and in the hybrid quantum mechanical molecular mechanical simulations of protein-ligand binding affinities and enzymatic reaction free energies, despite their accuracy and computational cost limitations. To address these limitations, we seek to advance double hybrid density functionals (DHDFs) for computing conformational and binding energies. Specifically, we aim to: (1) Further enhance the computational efficiency of the short range MP2 (SR-MP2) method, which was developed in our Phase I research and demonstrated to yield unprecedented accuracy and efficiency; (2) Build new double hybrid density functionals on top of our SR-MP2 in order to further extend its applicability; and (3) Demonstrate the use of both SR-MP2 and associated new DHDFs in chemical and biological problems. The new tools coming out of this Phase II research will outperform existing DFT and MP2 methods, and yield improved accuracy with reduced computational cost, opening new applications as well as improving existing ones in chemical, biochemical and biomedical research. This work will further strengthen Q-Chem's position as a global leader in the molecular modeling software market, making our program the most efficient and reliable computational quantum chemistry package for simulating large, complex chemical/biological systems.
描述(由申请人提供):Q-Chem是一个最先进的商业计算量子化学程序,它已经帮助成千上万的用户在广泛的学科中建模分子过程,包括生物学,化学和材料科学。在量子化学中,密度泛函理论(DFT)和二阶Moller-Plesset理论(MP2)已经大量用于分子力学力场的发展,以及蛋白质-配体结合亲和和酶反应自由能的混合量子力学分子力学模拟,尽管它们的准确性和计算成本有限。为了解决这些限制,我们寻求推进双杂化密度泛函(dhdf)计算构象和结合能。具体而言,我们的目标是:(1)进一步提高短程MP2 (SR-MP2)方法的计算效率,该方法在我们的I期研究中开发出来,并被证明具有前所未有的准确性和效率;(2)在SR-MP2的基础上构建新的双混合密度泛函,进一步扩展SR-MP2的适用性;(3)演示SR-MP2和相关的新dhdf在化学和生物问题中的应用。第二阶段研究中出现的新工具将超越现有的DFT和MP2方法,在降低计算成本的同时提高准确性,在化学、生物化学和生物医学研究中开辟新的应用,并改进现有的应用。这项工作将进一步加强Q-Chem作为分子建模软件市场的全球领导者的地位,使我们的程序成为模拟大型,复杂的化学/生物系统的最有效和可靠的计算量子化学软件包。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yihan Shao其他文献

Yihan Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yihan Shao', 18)}}的其他基金

Multiscale Modeling of Enzymatic Reactions and Firefly Bioluminescence
酶反应和萤火虫生物发光的多尺度建模
  • 批准号:
    10021018
  • 财政年份:
    2019
  • 资助金额:
    $ 48.02万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了