Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
基本信息
- 批准号:8754187
- 负责人:
- 金额:$ 20.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyApplications GrantsBiologicalBiologyCell Culture TechniquesCell LineClinicalComplexDataDoseEffectivenessExperimental DesignsExposure toFutureGoalsIndividualInjuryKnowledgeLeadLinear Energy TransferLiteratureMapsMasksMeasurementMeasuresMethodsMissionModalityModelingMono-SNational Cancer InstituteNon-Small-Cell Lung CarcinomaNormal tissue morphologyPenetrationProcessProtonsPublic HealthRadiationRadiation PhysicsRadiation therapyRelative Biological EffectivenessResearchResearch SupportResolutionRiskSamplingScanningSourceSystemTechniquesTestingTherapeuticTherapeutic IndexTumor VolumeUncertaintyVariantWorkbasecancer rehabilitationcancer therapycell killingcell typeclinically significantcostdesigneffective therapyexperienceflexibilityimprovedinnovationirradiationkillingsneoplastic cellnovelparticlephysical propertyproton beamproton therapypublic health relevancetreatment planningtreatment response
项目摘要
DESCRIPTION (provided by applicant): Despite the high costs involved, the number of proton therapy centers continues to increase exponentially. Remarkably, even as new centers come on line, there is increasing realization that there are significant gaps in our knowledge of the biologic effectiveness of protons, which limit the clinical potential of proton therapy. One common theme in the literature is that relative biologic effectiveness (RBE) varies substantially as a function of depth of penetration and dose. Yet, in current practice RBE is simplistically assumed to be 1.1 in all situations while computing radiation dose for treatments. This assumption may lead to an increased risk of injury to surrounding normal tissues where RBE may be higher than 1.1. Moreover, the opportunity to take advantage of the higher RBE to achieve greater killing of tumor cells is not realized. To date virtually all clinical proton treatments and biologic measurements of RBE have employed passive scattering proton therapy (PSPT). This has likely masked the importance of RBE variability. Intensity-modulated proton therapy (IMPT) delivered with pristine scanned proton beams is considered to be the future of proton therapy. IMPT is much more versatile than currently prevalent PSPT. However, for true multi-field optimized IMPT the high inhomogeneity of physical dose contributed by individual beams may be substantially affected by RBE variability and go unrecognized even by experienced practitioners. On the other hand, given sufficient knowledge, the inherent flexibility of IMPT planning may allow for the incorporation of RBE spatial variation into the treatment planning process, potentially increasing biologically effective target dose while simultaneously decreasing normal tissue exposure to high RBE regions of each beamlet. The long-term goals of our research are to improve our understanding of the biological effectiveness of protons and to employ the knowledge thus acquired to enhance the efficacy of intensity modulated proton therapy. In order to accomplish RBE optimized IMPT and thereby expand the therapeutic index of proton therapy, detailed spatial data concerning RBE is desperately needed in order to guide the inverse treatment planning process. In the current proposal we will use mono-energetic scanned proton beams, an innovative experimental design based on the physics of radiation transport and high- throughput biological techniques. The following aims will provide data essential for achieving our long-term goals; (1) Enhance a recently developed system for systematically and accurately mapping the biologic effectiveness of particle therapy, (2) Improve our understanding of the variability of RBE based on high- resolution, high accuracy biologic data, (3) Investigate the potential biologic and clinical consequences of spatial RBE variability. In contrast to other studies focusing solely on characterizing RBE using traditional methods, the significance of this proposal lies in generating highly accurate RBE data with unprecedented spatial resolution. Such data will allow for the incorporation of variable biologic effectiveness ito IMPT treatment planning and dramatically expand the therapeutic ratio of particle therapy.
描述(由申请人提供):尽管涉及的成本很高,但质子治疗中心的数量继续呈指数级增长。值得注意的是,尽管新的中心上线了,但人们越来越意识到,我们对质子的生物有效性的了解存在显著差距,这限制了质子治疗的临床潜力。文献中的一个共同主题是相对生物有效性(RBE)作为渗透深度和剂量的函数而变化很大。然而,在目前的实践中,在计算治疗的辐射剂量时,简化地假设所有情况下的RBE为1.1。这一假设可能会增加RBE可能高于1.1的周围正常组织的损伤风险。此外,利用较高的RBE实现对肿瘤细胞的更大杀伤力的机会没有实现。到目前为止,几乎所有的临床质子治疗和RBE的生物学测量都采用了被动散射质子治疗(PSPT)。这很可能掩盖了RBE可变性的重要性。强度调制质子治疗(IMPT)被认为是质子治疗的未来。IMPT比目前流行的PSPT具有更多的通用性。然而,对于真正的多场优化IMPT,单束贡献的物理剂量的高度不均匀可能会受到RBE变异性的很大影响,即使是有经验的从业人员也无法识别。另一方面,如果有足够的知识,IMPT计划的固有灵活性可能允许将RBE空间变异纳入治疗计划过程,潜在地增加生物有效靶剂量,同时减少正常组织对每个Beamlet高RBE区域的暴露。我们研究的长期目标是提高我们对质子生物学有效性的理解,并利用由此获得的知识来提高强度调制质子疗法的疗效。为了实现RBE优化的IMPT,从而扩展质子治疗的治疗指标,迫切需要有关RBE的详细空间数据来指导反向治疗规划过程。在目前的提案中,我们将使用单能扫描质子束,这是一种基于辐射传输物理和高通量生物技术的创新实验设计。以下目标将为实现我们的长期目标提供必要的数据:(1)加强最近开发的系统,用于系统和准确地绘制粒子疗法的生物有效性图,(2)基于高分辨率、高精度的生物数据,提高我们对RBE变异性的理解,(3)研究RBE空间变异性的潜在生物学和临床后果。与其他只关注使用传统方法表征RBE的研究不同,该建议的意义在于生成具有前所未有的空间分辨率的高精度RBE数据。这些数据将允许将不同的生物有效性纳入到实施治疗计划中,并极大地扩大粒子疗法的治疗比率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R GROSSHANS其他文献
DAVID R GROSSHANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R GROSSHANS', 18)}}的其他基金
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10360627 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10491858 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10661007 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10273297 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10270307 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10570305 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10460578 - 财政年份:2021
- 资助金额:
$ 20.88万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9763496 - 财政年份:2016
- 资助金额:
$ 20.88万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9172110 - 财政年份:2016
- 资助金额:
$ 20.88万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8887318 - 财政年份:2014
- 资助金额:
$ 20.88万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 20.88万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 20.88万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 20.88万 - 项目类别:
Studentship