Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
基本信息
- 批准号:10360627
- 负责人:
- 金额:$ 46.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelApoptosisAreaBiologicalBiological ModelsBrainBrain DiseasesBrain GlioblastomaBrain InjuriesBrain NeoplasmsCarbonCarbon ionCell DeathCell SurvivalCellsCerebrumCessation of lifeClinicalClinical TreatmentClinical TrialsCoculture TechniquesDataDepositionDiseaseDoseDose FractionationEffectivenessEnvironmentFractionationGlioblastomaGliomaGrowthHeavy IonsHeterogeneityHigh-LET RadiationHumanImmunocompetentImmunotherapyIn VitroIncidenceIonsKnowledgeLeadMalignant NeoplasmsMapsMissionMitoticModelingMolecularMusNational Cancer InstituteNecrosisNecrosis InductionNeuraxisNeuronsNormal tissue morphologyOrganoidsPathway interactionsPatientsPharmacologyPhotonsPlayProtonsPublic HealthRadiationRadiation Dose UnitRadiation necrosisRadiation therapyRelative Biological EffectivenessReportingResearchResearch SupportRodent ModelRoentgen RaysRoleSchemeSignal PathwaySurvival RateSystemTissuesToxic effectTransgenic AnimalsTreatment EfficacyVariantbasebrain tissuecancer cellcancer rehabilitationcancer therapycarbon ion therapycell killingcell typeclinical practiceclinically relevantcombinatorialdensitydesigndisorder controlimprovedin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellinterestionizationirradiationneoplastic cellneuroinflammationnovelnovel therapeuticsparticleparticle beamparticle therapypatient responsephenomenological modelsphysical propertyprocess optimizationprogramsproton therapyradiation resistanceradiation responseradioresistantresponsestem cellssuccesstherapy developmenttreatment planningtreatment responsetumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Radiation plays a central role in the management of the most lethal central nervous system malignancy,
glioblastoma (GBM), yet local control rates, and hence survival, remain dismal for this disease. Even novel
therapies, such as immunotherapy, have not shown efficacy in the treatment of GBM. Meanwhile, radiation
dose escalation studies have demonstrated improved local control. However, dose escalated treatments are
hindered by the increased incidence of radiation induced brain necrosis in surrounding tissues. High LET
particle therapy holds the potential to both increase tumor cell kill and decrease normal tissue toxicity, yet
the data required to develop models for clinical treatments regarding the biological effectiveness of high LET
beams on normal brain tissue and GBM cells is sparse. This fact is especially true when considering results
reported utilizing the appropriate environment for the origination and growth of GBM cells – the human
brain. We have implemented recently developed high accuracy models which are truly beginning to
recapitulate the native GBM niche in order to correlate both necrosis induction and progression and tumor
cell response with the physical parameters of particle beams. These models include multi-cell type human
brain organoids (cerebral organoids) as well as immune-competent orthotopic rodent models. Using these
models, we will identify the physical factors of particle beams which may lead to necrosis. This is significant
in that this data will aid the design of safer treatments by reducing necrosis and improving disease control.
In the second component of our study, we will examine the molecular mechanisms of necrosis and
neuroinflammation. Rather than being a simple accidental, disorganized death, we will determine if radiation
induces an orderly programmed cell death pathway. Overall, we will conduct the following aims; (1) identify
the optimal particle and fractionation for treatment of GBM, (2) explore the cellular and molecular
mechanisms of radiation induced brain damage, and (3) develop biological effect models for clinical use.
The knowledge gained will quickly influence the treatment of brain tumor patients and expedite the clinical
introduction heavy ion therapy for glioblastoma.
项目摘要/摘要
放射在最致命的中枢神经系统恶性肿瘤的治疗中起着核心作用,
胶质母细胞瘤(GBM),但局部控制率以及因此存活率对于这种疾病仍然令人沮丧。甚至小说
诸如免疫疗法的疗法在GBM的治疗中没有显示出有效性。同时,辐射
剂量递增研究已证明局部控制得到改善。然而,剂量递增治疗
受到周围组织中辐射诱导的脑坏死的发生率增加的阻碍。高LET
粒子疗法具有既增加肿瘤细胞杀伤又降低正常组织毒性的潜力,
开发高LET生物学有效性临床治疗模型所需的数据
正常脑组织和GBM细胞上的光束很少。在考虑结果时,这一事实尤其正确
报道了利用GBM细胞起源和生长的适当环境-人
个脑袋我们已经实施了最近开发的高精度模型,这些模型真正开始
概括天然GBM生态位,以便将坏死诱导和进展与肿瘤
细胞反应与粒子束的物理参数。这些模型包括多细胞类型的人
脑类器官(脑类器官)以及免疫活性原位啮齿动物模型。使用这些
模型,我们将确定粒子束的物理因素,可能导致坏死。这是重要
因为这些数据将通过减少坏死和改善疾病控制来帮助设计更安全的治疗方法。
在我们研究的第二部分,我们将研究坏死的分子机制,
神经炎症而不是一个简单的意外,无组织的死亡,我们将确定是否辐射
诱导有序的程序性细胞死亡途径。总体而言,我们将实现以下目标:(1)确定
探讨治疗GBM的最佳颗粒和分级方法;(2)探讨GBM的细胞和分子生物学特性,
放射性脑损伤的机制;(3)建立临床应用的生物效应模型。
所获得的知识将迅速影响脑肿瘤患者的治疗,加快临床
胶质母细胞瘤重离子治疗简介
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R GROSSHANS其他文献
DAVID R GROSSHANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R GROSSHANS', 18)}}的其他基金
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10491858 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10661007 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10273297 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10270307 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10570305 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10460578 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9763496 - 财政年份:2016
- 资助金额:
$ 46.13万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9172110 - 财政年份:2016
- 资助金额:
$ 46.13万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8754187 - 财政年份:2014
- 资助金额:
$ 46.13万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8887318 - 财政年份:2014
- 资助金额:
$ 46.13万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists