Peptidoglycan Biogenesis in Escherichia Coli
大肠杆菌中的肽聚糖生物合成
基本信息
- 批准号:8602803
- 负责人:
- 金额:$ 41.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAddressAlanineAmidohydrolasesAnti-Bacterial AgentsAntibiotic TherapyAntibioticsBacteriaBiochemicalBiogenesisBiologicalBiological ModelsCell SeparationCell ShapeCellsCo-ImmunoprecipitationsCodeCoupledCrutchesCytokinesisCytolysisDevelopmentEnzymesEquilibriumEscherichia coliFutureGenesGeneticGoalsGrowthHydrolysisIn VitroInvestigationLactamsLifeLipoprotein (a)LysostaphinLyticMaintenanceMediatingMembraneMolecularMonobactamsMutationN-Acetylmuramoyl-L-alanine AmidasePathway interactionsPenicillin-Binding ProteinsPenicillinsPeptidoglycanPeptidyltransferasePhasePolymersPolysaccharidesProcessProteinsReactionRegulationRelianceResearch ProposalsRoleRuptureShapesSiteSurfaceSystemVancomycinWorkamidasebasecell growth regulationcrosslinkdaughter cellfollow-upgenetic analysisin vivomutantnoveloperationperiplasmpreventprospectiveprotein functionprotein protein interactionpublic health relevanceresearch studyscreeningyeast two hybrid system
项目摘要
DESCRIPTION (provided by applicant): Most bacteria surround themselves with a crosslinked polysaccharide polymer called peptidoglycan (PG) that is critical for the maintenance of cell shape and integrity. Because of its essentiality, surface exposure, and uniqueness to bacteria, the PG synthetic pathway has historically been an effective target for many of our most important antibacterial treatments like penicillin and vancomycin. Penicillin targets the PG synthases called the penicillin binding proteins (PBPs). These enzymes come in several varieties, but the major cellular PG synthases are thought to be the bi-functional PBPs because they possess both the transglycosylase and transpeptidase activities needed to synthesize the glycan strands of PG and crosslink them, respectively. Despite their prominence as antibiotic targets, we still do not understand how the bi-functional PBPs assemble the cell-shaped PG meshwork or what additional factors might help them accomplish this task. One of the principle reasons for this has been an over-reliance on penicillin and other antibiotics as probes for the identification of important PG assembly factors. To extend our experimental reach beyond the "crutch" of antibiotic probes, we developed a genetic approach to identify factors needed for proper PBP function in vivo using E. coli as a model system. E. coli encodes three bi-functional PBPs: PBP1A, PBP1B, and PBP1C. Each one is individually dispensable, but the simultaneous inactivation of both PBP1A and PBP1B leads to rapid cell lysis. Based on the essentiality of the PBP1A/PBP1B combination, we reasoned that factors required to promote PBP1A activity could be identified by screening for mutants synthetically lethal with the loss of PBP1B (slb mutants) and vice versa. Using this approach, we have implicated several known division proteins and a lipoprotein of unknown function in the assembly of PG by PBP1A. In the first two aims of this proposal we describe genetic, cell biological, and biochemical experiments intended to investigate the connection between PBP1A and these factors. These studies will help us determine whether or not the Slb factors are directly interacting with and/or influencing either of the two enzymatic activities of PBP1A. In related work, we discovered that the EnvC protein is likely to be an activator of the PG hydrolases (amidases) AmiA and AmiB that stimulates their activity to bring about daughter cell separation during cytokinesis. Specific Aim 3 seeks to determine how EnvC and the amidases cooperate to perform such a delicate operation without causing a lethal breach in the PG layer. We will begin addressing this by defining the mechanism by which EnvC might activate the amidases and identifying regulators of this activation activity. The long term goal of our work is to develop a molecular understanding of PG assembly by the PBPs and how it is remodeled in a controlled fashion by PG hydrolases. By gaining this understanding we hope to uncover new ways to disrupt the cellular balance between PG synthesis and hydrolysis for the development of novel classes of lytic antibiotics.
性状(由申请方提供):大多数细菌被称为肽聚糖(PG)的交联多糖聚合物包围,肽聚糖对维持细胞形状和完整性至关重要。由于其对细菌的重要性、表面暴露和独特性,PG合成途径历来是我们许多最重要的抗菌治疗(如青霉素和万古霉素)的有效靶点。青霉素靶向称为青霉素结合蛋白(PBP)的PG酶。这些酶有几种,但主要的细胞PG糖苷酶被认为是双功能的PBP,因为它们具有合成PG聚糖链和交联它们所需的转糖基酶和转肽酶活性。尽管它们作为抗生素靶标的突出地位,我们仍然不了解双功能PBPs如何组装细胞状PG网络,或者还有什么其他因素可以帮助它们完成这项任务。其主要原因之一是过度依赖青霉素和其他抗生素作为鉴定重要PG组装因子的探针。为了将我们的实验范围扩展到抗生素探针的“拐杖”之外,我们开发了一种遗传方法,使用E.大肠杆菌作为模型系统。E.大肠杆菌编码三种双功能PBPs:PBP 1A、PBP 1B和PBP 1C。每一个都是单独灭活的,但PBP 1A和PBP 1B同时灭活导致快速细胞裂解。基于PBP 1A/PBP 1B组合的必要性,我们推断,可以通过筛选具有PBP 1B损失的合成致死突变体(slb突变体)来鉴定促进PBP 1A活性所需的因子,反之亦然。使用这种方法,我们有牵连的几个已知的分裂蛋白和未知功能的脂蛋白在组装PG的PBP 1A。在本提案的前两个目标中,我们描述了旨在研究PBP 1A与这些因子之间的联系的遗传学、细胞生物学和生物化学实验。这些研究将帮助我们确定Slb因子是否直接与PBP 1A的两种酶活性相互作用和/或影响其中之一。在相关工作中,我们发现EnvC蛋白可能是PG水解酶(酰胺酶)AmiA和AmiB的激活剂,其刺激它们的活性以在胞质分裂期间引起子细胞分离。具体目标3旨在确定EnvC和酰胺酶如何合作以执行这种微妙的操作,而不会导致PG层的致命破坏。我们将开始通过定义EnvC可能激活酰胺酶的机制和识别这种激活活性的调节剂来解决这个问题。我们的工作的长期目标是发展的PG组装的PBPs的分子理解,以及它是如何被改造的PG水解酶在一个受控的方式。通过获得这种理解,我们希望发现新的方法来破坏PG合成和水解之间的细胞平衡,以开发新型的裂解抗生素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas G Bernhardt其他文献
Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria
革兰氏阴性菌多层细胞包膜的协同组装
- DOI:
10.1016/j.mib.2024.102479 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Elayne M Fivenson;Laurent Dubois;Thomas G Bernhardt - 通讯作者:
Thomas G Bernhardt
Thomas G Bernhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas G Bernhardt', 18)}}的其他基金
Project 3: Defining and defeating the mechanisms of outer membrane biogenesis in Gram-negative bacteria
项目 3:定义并破解革兰氏阴性菌外膜生物发生机制
- 批准号:
10699956 - 财政年份:2022
- 资助金额:
$ 41.34万 - 项目类别:
Targeting cell separation systems of gram-negative bacteria.
针对革兰氏阴性细菌的细胞分离系统。
- 批准号:
8807923 - 财政年份:2014
- 资助金额:
$ 41.34万 - 项目类别:
Targeting cell separation systems of gram-negative bacteria.
针对革兰氏阴性细菌的细胞分离系统。
- 批准号:
9238648 - 财政年份:2014
- 资助金额:
$ 41.34万 - 项目类别:
Targeting cell separation systems of gram-negative bacteria.
针对革兰氏阴性细菌的细胞分离系统。
- 批准号:
8703851 - 财政年份:2014
- 资助金额:
$ 41.34万 - 项目类别:
Identifying and validating new antibiotic targets in cell wall synthesis pathways
识别和验证细胞壁合成途径中的新抗生素靶标
- 批准号:
8843345 - 财政年份:2012
- 资助金额:
$ 41.34万 - 项目类别:
Identifying and validating new antibiotic targets in cell wall synthesis pathways
识别和验证细胞壁合成途径中的新抗生素靶标
- 批准号:
9067422 - 财政年份:2012
- 资助金额:
$ 41.34万 - 项目类别:
Identifying and validating new antibiotic targets in cell wall synthesis pathways
识别和验证细胞壁合成途径中的新抗生素靶标
- 批准号:
8279957 - 财政年份:2012
- 资助金额:
$ 41.34万 - 项目类别:
Identifying and validating new antibiotic targets in cell wall synthesis pathways
识别和验证细胞壁合成途径中的新抗生素靶标
- 批准号:
8659341 - 财政年份:2012
- 资助金额:
$ 41.34万 - 项目类别:
Identifying and validating new antibiotic targets in cell wall synthesis pathways
识别和验证细胞壁合成途径中的新抗生素靶标
- 批准号:
8475545 - 财政年份:2012
- 资助金额:
$ 41.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant














{{item.name}}会员




