Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
基本信息
- 批准号:8737281
- 负责人:
- 金额:$ 24.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAneuploidyAwardBackBindingBiochemistryBioinformaticsBiological SciencesBiologyBooksCancer EtiologyCell divisionCell physiologyCellsCellular biologyCentrosomeCharacteristicsChromatinChromosome SegregationChromosomesComplementComplexCryoelectron MicroscopyDevelopment PlansDoctor of PhilosophyEB1 microtubule binding proteinsElectron MicroscopyEnsureEnvironmentEquipmentEukaryotic CellEventFailureFluorescence MicroscopyFoundationsGamma-Tubulin RingGenerationsGenetic MaterialsGoalsGrowthIn VitroIndividualInterphaseLabelLaboratory ResearchLeadLearningLengthLifeMacromolecular ComplexesMalignant NeoplasmsMapsMedicalMeiosisMentorsMicroscopyMicrotubule-Organizing CenterMicrotubulesMitosisMitoticMitotic spindleModelingMolecularNegative StainingOccupationsPathway interactionsPhasePhenotypePlayPlus End of the MicrotubulePositioning AttributePreparationProcessProtein Complex SubunitRecombinantsResearchResearch ProposalsResolutionResourcesRoleSiteStagingStructureSystemTechniquesTextTrainingTraining ActivityX-Ray CrystallographyXenopusbasecancer cellcancer therapycareercareer developmentdaughter cellegggamma Tubulininsightinterdisciplinary approachlight microscopyparticlepolymerizationprotein complexreconstitutionreconstructionsegregationskillstomographytool
项目摘要
Project Summary
The microtubule(MT)-based mitotic spindle is the cellular apparatus responsible for reliable
chromosome segregation during eukaryotic cell division. Failure in this process is associated with many
cancers. Spindle assembly is initiated by MT nucleation through the gamma tubulin ring complex (gTuRC)
at centrosomes, chromatin and the spindle itself, yet it is unknown how gTuRC is localized and specifically
activated there. The recently identified eight-subunit protein complex Augmin localizes gTuRC to spindle
MTs for MT generation, and thus represents the first defined gTuRC effector. My immediate research goal
is to understand the mechanism of Augmin in MT generation, and its exact role in the chromosome
segregation machinery and other noncentrosomal nucleation sites. By employing an interdisciplinary
approach, my long-term goal is to elucidate how MT nucleation is locally activated and coordinated.
Since I arrived at UCSF as an HHMI Fellow of the Life Science Research Foundation, I characterized
Augmin's function in meiotic spindle assembly, purified both native and recombinant Augmin as well as
gTuRC, and thus developed unique molecular tools to study MT nucleation in vitro. Here, I propose to (i)
determine how Augmin and gTuRC generate MTs by reconstituting MT nucleation in vitro and analyzing it
dynamically by fluorescence microscopy (mentor Dr. Ron Vale). (ii) I will investigate the currently unknown
structures of Augmin and its MT-bound complexes to understand how it activates MT nucleation at a
molecular level using electron microscopy (mentor Dr. David Agard) and X-ray crystallography (major
technique of Ph.D., independent phase). (iii) By adding fluorescent Augmin to Xenopus spindles, I will
identify and quantify MT generation events during the spindle assembly pathway (independent phase).
These results seek to answer the major unresolved questions of when, where and how MTs are nucleated
to constitute the self-assembling spindle, and is likely to be relevant for MT nucleation during interphase.
To achieve these aims, I will need to learn high-resolution light microscopy and electron microscopy.
This will complement my training in cell biology, biochemistry and X-ray crystallography and prepare me to
study complex macromolecular systems, such as the mitotic spindle, from any angle necessary. Based on
a rigorous career development plan, the outstanding mentoring team I have found will support me in
expanding my personal and lab management skills in preparation to complete a successful U.S. job search
and lead a research laboratory. Combined with state-of-the-art equipment, an interactive spirit, and
excellent career training activities, UCSF provides the optimal environment for the mentored phase of this
research proposal. The K99/R00 award will provide me the opportunity to acquire the necessary skills to
transition into an independent tenure-track position. Elucidating the molecular mechanism of MT nucleation
will pave the way to understanding a fundamental process in biology.
项目摘要
微管(MT)为基础的有丝分裂纺锤体是负责可靠的细胞器
在真核细胞分裂过程中染色体分离。这个过程中的失败与许多
癌的纺锤体组装由MT通过γ微管蛋白环复合物(gTuRC)成核引发
在中心体,染色质和纺锤体本身,但它是未知的,如何gTuRC定位和特异性
在那里激活。最近鉴定的八亚基蛋白复合物Augmin将gTuRC定位于纺锤体
因此,它代表了第一个定义的gTuRC效应子。我近期的研究目标
目的是了解Augmin在MT产生中的作用机制及其在染色体中的确切作用
分离机制和其他非中心体成核位点。通过使用跨学科的
我的长期目标是阐明MT成核是如何局部激活和协调的。
自从我作为生命科学研究基金会的HHMI研究员来到加州大学旧金山分校以来,
Augmin在减数分裂纺锤体组装中的功能,纯化的天然和重组Augmin以及
gTuRC,从而开发了独特的分子工具来研究MT体外成核。在此,我建议(i)
通过体外重建MT成核并对其进行分析,确定Augmin和gTuRC如何产生MT
通过荧光显微镜(导师罗恩瓦尔博士)动态地观察。(ii)我将调查目前未知的情况
Augmin及其MT结合复合物的结构,以了解它如何激活MT成核,
分子水平使用电子显微镜(导师大卫Agard博士)和X射线晶体学(主要
博士技术,独立阶段)。(iii)通过将荧光Augmin添加到Xenopus纺锤体中,
识别和量化纺锤体组装途径(独立阶段)期间的MT生成事件。
这些结果试图回答主要的悬而未决的问题,何时,何地,以及如何成核的MT
构成自组装主轴,并可能是相关的MT成核在相间。
为了实现这些目标,我需要学习高分辨率光学显微镜和电子显微镜。
这将补充我在细胞生物学,生物化学和X射线晶体学方面的培训,并为我做好准备,
从任何必要的角度研究复杂的大分子系统,如有丝分裂纺锤体。基于
严格的职业发展计划,我发现优秀的指导团队将支持我,
扩展我的个人和实验室管理技能,为成功完成美国求职做准备
领导一个研究实验室结合最先进的设备,互动的精神,
优秀的职业培训活动,UCSF提供了最佳的环境,指导阶段,这
研究提案。K99/R 00奖将为我提供获得必要技能的机会,
过渡到一个独立的终身职位。MT成核的分子机理
将为理解生物学的基本过程铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sabine Petry其他文献
Sabine Petry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sabine Petry', 18)}}的其他基金
Role and Mechanisms of Microtubule Nucleation in Spindle Assembly
微管成核在纺锤体组装中的作用和机制
- 批准号:
10364007 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
Role and Mechanisms of Microtubule Nucleation in Spindle Assembly
微管成核在纺锤体组装中的作用和机制
- 批准号:
10553717 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8411980 - 财政年份:2012
- 资助金额:
$ 24.83万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8225469 - 财政年份:2012
- 资助金额:
$ 24.83万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8714338 - 财政年份:2012
- 资助金额:
$ 24.83万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 24.83万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 24.83万 - 项目类别:














{{item.name}}会员




