Role and Mechanisms of Microtubule Nucleation in Spindle Assembly
微管成核在纺锤体组装中的作用和机制
基本信息
- 批准号:10364007
- 负责人:
- 金额:$ 43.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBiochemistryBiological AssayBiologyBiophysicsCell Cycle RegulationCell divisionCell physiologyCellsCellular biologyCentrosomeChromosome SegregationChromosomesComplexCryoelectron MicroscopyCytokinesisDataDiseaseEventFailureFiberFoundationsGenerationsGenetic MaterialsImportinsIn VitroKinetochoresLaboratoriesLifeLiquid substanceLocationMacromolecular ComplexesMalignant NeoplasmsMechanicsMediatingMembraneMetaphaseMicroscopyMicrotubule BundleMicrotubulesMitosisMitotic spindleModelingMolecular MachinesOrganellesPathway interactionsPhasePositioning AttributeProcessProteinsReactionResearchResearch PersonnelRoleScientistShapesSideSister ChromatidSourceStructureSystemTimeTubulinVisualizationWorkXenopusbasecell regenerationdaughter celldefined contributionegginsightlight microscopymonomernovelparticleprotein complexreconstitutionsingle moleculestructural biology
项目摘要
Project Summary
Cell division is orchestrated by the mitotic spindle, composed of hundreds of thousands of microtubules (MT).
Since the discovery of the MT building block tubulin 50 years ago, scientists have puzzled over how the mitotic
spindle assembles via MTs and executes chromosome segregation despite a MT turnover of seconds. Now we
know that spindle assembly relies largely on MT nucleation. Yet, when, where, and how MTs are nucleated, and
how they are subsequently incorporated into the bipolar spindle, remains unclear.
Based on my discovery of branching MT nucleation, my laboratory contributed to understanding how several
essential factors, namely the protein complex augmin, the phase-separating protein TPX2, and the nucleator g-
TuRC, conduct this reaction. Meanwhile it has been shown that this mechanism creates a majority of MTs in a
spindle. As a result of this work, we are in an ideal position to investigate how branching MT nucleation is
incorporated into spindle assembly to produce a continuous MT framework supporting chromosome segregation.
We will pursue three aims: Aim 1: Determine where, when, and how MTs form in the vicinity of
chromosomes. We will observe exactly where and when MTs form at purified chromosomes in Xenopus egg
extract. We developed a novel assay to visualize MT nucleation from chromosomes, a direct visualization that
is difficult to do in living cells. Further, we will define the contribution toward MT generation of the RanGTP
pathway, branching MT nucleation, the chromosomal passenger complex, and the kinetochore. We hypothesize
that branching MT nucleation is the main source of MTs from chromosomes. Aim 2: Elucidate how importins
regulate onset of branching microtubule nucleation. RanGTP releases the spindle assembly factor TPX2
from importins, which then stimulates branching MT nucleation. Previous studies assumed that TPX2 exists as
a monomer. In contrast, we recently showed that the active form of TPX2 undergoes a liquid liquid phase
separation (LLPS), and importins inhibit this TPX2 condensate. How importins achieve inhibition of TPX2’s LLPS
is not only important for MT assembly but also widely relevant in cell biology, as few studies have described how
inhibition of LLPS can regulate cellular function. We will further assess whether the second essential branching
factor, augmin, is also regulated by RanGTP, a pathway that would provide additional control for cell-cycle
regulation. Aim 3: Provide mechanistic insight into the core branching factor augmin. To determine the
structural basis of augmin-medidated branching MT nucleation, we will solve the single particle cryo-EM structure
of augmin. This work will reveal the location and fold of augmin’s eight subunits. Using structure-function
analysis, we will investigate the functional interfaces through which augmin binds to MTs and g-TuRC, besides
interrogating how augmin and TPX2 interact. Achieving these aims will help answer open and pressing questions
in cell biology about how MT nucleation occurs in the correct location and at the correct time to assemble the
mitotic spindle.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sabine Petry其他文献
Sabine Petry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sabine Petry', 18)}}的其他基金
Role and Mechanisms of Microtubule Nucleation in Spindle Assembly
微管成核在纺锤体组装中的作用和机制
- 批准号:
10553717 - 财政年份:2022
- 资助金额:
$ 43.42万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8411980 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8737281 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8225469 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
Role and Mechanism of Microtubule Nucleation within the Mitotic Spindle
有丝分裂纺锤体内微管成核的作用和机制
- 批准号:
8714338 - 财政年份:2012
- 资助金额:
$ 43.42万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8454542 - 财政年份:2011
- 资助金额:
$ 43.42万 - 项目类别:
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8099975 - 财政年份:2011
- 资助金额:
$ 43.42万 - 项目类别:
Structural biochemistry studies on MAP kinase allosteric binding sites
MAP 激酶变构结合位点的结构生物化学研究
- 批准号:
8286268 - 财政年份:2011
- 资助金额:
$ 43.42万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
2099053 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
3202487 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
7161315 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE-BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
2099054 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
6829155 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
BIOCHEMISTRY OF LEUKEMIA VIRUS CORE BINDING FACTOR
白血病病毒核心结合因子的生物化学
- 批准号:
6475801 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:
Biochemistry of Leukemia Virus Core Binding Factor
白血病病毒核心结合因子的生物化学
- 批准号:
8644851 - 财政年份:1993
- 资助金额:
$ 43.42万 - 项目类别:














{{item.name}}会员




