Mapping dynamic functional networks across environments and genetic backgrounds
绘制跨环境和遗传背景的动态功能网络
基本信息
- 批准号:8631143
- 负责人:
- 金额:$ 52.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-26 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAllelesAnimal ModelAwarenessBiologicalBuffersCatalogingCatalogsCellsChromosome MappingCodeCommunitiesComplexComputing MethodologiesDataData SetDiseaseDrug effect disorderEnvironmentEssential GenesEukaryotaExhibitsFailureFunctional RNAGenesGeneticGenetic PolymorphismGenetic VariationGenomeGenotypeGoalsGrantGrowthHealthHereditary DiseaseHeritabilityHuman GeneticsHuman GenomeIndividualLeadLinkMapsMeasuresMethodsMetricModelingOther GeneticsPhenotypePlayPropertyResearchResolutionResourcesRoleSaccharomyces cerevisiaeSaccharomycetalesStressStructureSurveysSystemTemperatureTranslatingVariantYeastsbasecomputer frameworkfitnessfunctional genomicsgene discoverygene functiongenetic analysisgenetic variantgenome sequencinggenome wide association studygenome-widehuman diseaseinsightinterestmutantpleiotropismresearch studyresponsetooltraityeast genetics
项目摘要
DESCRIPTION (provided by applicant): Whole-genome sequencing projects are providing unprecedented information about human genetic variation. Polymorphisms abound in the human genome, in both coding and non-coding regions, but it remains a major challenge to associate genome variation with a functional consequence. There is growing awareness that genetic interactions, involving combinations of polymorphic alleles, must play a major role in determining phenotype. Yet, we have a limited understanding of how genetic variation translates into genetic interactions that affect an individual. One of the keys to solving this challenging problem will most certainly be an understanding of the general rules governing genetic networks, and how they are rewired in response to environmental or genetic perturbation. The budding yeast Saccharomyces cerevisiae has served as the pioneer model organism for virtually all genome-scale methods, and offers a unique format for exploring genetic networks. Our group developed the Synthetic Genetic Array (SGA) method, which automates yeast genetics and enables systematic analysis of genetic interactions. In the last grant period, we used the SGA method to complete a reference genetic interaction map for yeast, in standard growth conditions. The global network is rich in functional information, mapping a cellular wiring diagram of pleiotropy. Our analysis also revealed that a portion of the network was not mappable, with ~35% of query gene mutants exhibiting weak digenic genetic interaction profiles. These observations emphasize the need to survey genetic interactions in a condition-specific manner, to understand how genetic networks respond to genetic and other insults that may lead to disease states. AIM 1: Mapping condition-specific genetic networks on a genome-wide scale. We will use the SGA method to generate unbiased, genome-scale maps of genetic interactions across diverse conditions. Our systematic approach will generate the largest dynamic biological network of its kind, and will provide a resource to quantify environmental influences on genetic network structure. AIM 2: Global mapping of higher-order genetic interaction networks. We will map a network comprised of complex genetic interactions involving more than two genes. We will focus on hub genes, which are highly connected in the genetic network, and may act as general genetic modifiers. Modeling complex genetic interactions involving more than two genes will allow us to derive general rules governing genetic robustness and the relationship between genotype and phenotype. AIM 3: Quantification and analysis of condition-specific and higher-order genetic interactions. We will develop a computational framework for measuring genetic interactions across environments and genetic backgrounds, which will provide the basis for addressing several fundamental questions regarding the plasticity of genetic networks and the ability of higher-order genetic interactions t modulate complex phenotypes.
描述(由申请人提供):全基因组测序项目提供了前所未有的人类遗传变异信息。在人类基因组中,在编码区和非编码区都存在大量多态性,但将基因组变异与功能后果相关联仍然是一个重大挑战。越来越多的人认识到,遗传相互作用,包括多态等位基因的组合,必须发挥决定表型的主要作用。然而,我们对遗传变异如何转化为影响个体的遗传相互作用的理解有限。解决这个具有挑战性的问题的关键之一肯定是理解遗传网络的一般规则,以及它们如何响应环境或遗传干扰而重新连接。芽殖酵母酿酒酵母(Saccharomyces cerevisiae)是几乎所有基因组规模方法的先驱模式生物,并为探索遗传网络提供了独特的形式。我们的团队开发了合成遗传阵列(SGA)方法,该方法使酵母遗传学自动化,并能够系统地分析遗传相互作用。在上一个资助期,我们使用SGA方法在标准生长条件下完成了酵母的参考遗传相互作用图谱。全球网络包含丰富的功能信息,映射出多效性的细胞接线图。我们的分析还显示,网络的一部分是不可映射的,约35%的查询基因突变体表现出弱的双基因遗传相互作用谱。这些观察结果强调了以特定条件的方式调查遗传相互作用的必要性,以了解遗传网络如何应对可能导致疾病状态的遗传和其他侮辱。目的1:在全基因组范围内绘制条件特异性遗传网络。我们将使用SGA方法来生成不同条件下遗传相互作用的无偏的基因组规模图。我们的系统方法将产生最大的动态生物网络,并将提供一个资源来量化环境对遗传网络结构的影响。目的2:高阶遗传相互作用网络的全局映射。我们将绘制一个由涉及两个以上基因的复杂遗传相互作用组成的网络。我们将重点放在枢纽基因,这是高度连接在遗传网络,并可能作为一般的遗传修饰剂。对涉及两个以上基因的复杂遗传相互作用进行建模,将使我们能够推导出控制遗传鲁棒性和基因型与表型之间关系的一般规则。目的3:条件特异性和高阶遗传相互作用的定量和分析。我们将开发一个计算框架来测量跨环境和遗传背景的遗传相互作用,这将为解决有关遗传网络的可塑性和高阶遗传相互作用调节复杂表型的能力的几个基本问题提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenda Jean ANDREWS其他文献
Brenda Jean ANDREWS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenda Jean ANDREWS', 18)}}的其他基金
Mapping the reference genetic network of a eukaryotic cell
绘制真核细胞的参考遗传网络
- 批准号:
8147861 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Mapping dynamic functional networks across environments and backgrounds
跨环境和背景映射动态功能网络
- 批准号:
10557915 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Mapping the reference genetic network of a eukaryotic cell
绘制真核细胞的参考遗传网络
- 批准号:
8306581 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Mapping dynamic functional networks across environments and genetic backgrounds
绘制跨环境和遗传背景的动态功能网络
- 批准号:
10063947 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Mapping dynamic functional networks across environments and backgrounds
跨环境和背景映射动态功能网络
- 批准号:
10366792 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Mapping the reference genetic network of a eukaryotic cell
绘制真核细胞的参考遗传网络
- 批准号:
7948564 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Research Grant














{{item.name}}会员




