FORCE SPECTROSCOPY AND STRUCTURAL BIOLOGY OF HAIR-CELL TIP LINKS

毛细胞尖端连接的力谱和结构生物学

基本信息

  • 批准号:
    8670721
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-16 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The hair-cell tip link is an essential component of the mechanotransduction apparatus in the inner ear. During the past four years my research has focused on the structural biology of hair-cell tip links. I plan to continue this line of research,as my long-term career goal is to lead a multidisciplinary research group that studies the molecular mechanisms of hair-cell mechanotransduction. The research work I did during my postdoctoral training answered some key questions about the elasticity of tip-link fragments, and how the tips of cadherin-23 and protocadheirn-15 interact with each other. However, this work also opened the door to explore the biophysics of the entire tip link, and produced computational predictions about the strength and elasticity of tip links tha need to be verified experimentally. My short-term goals are to determine the structure of the whole tip link, to measure the strength of the tip-link bond experimentally, and to establish how mechanical force is transmitted through the tip link and to the hair-cell transduction channel. To achieve my short term goals, and during the K99 mentored phase, I will learn how to use the Pichia pastoris system for expression of long extracellular tip link fragments involving multiple EC repeats. The Gaudet lab has the expertise and tools for large-scale expression of proteins in this system In parallel I will learn how to use the optical tweezers setup at the Corey lab. This involves learning how to use and align lasers, how to design and synthesize linkers between molecules and functionalized, micrometer-size polystyrene beads, as well as performing the actual experiments. Training will be received in two laboratories with an outstanding and exceptionally friendly group of researchers. I will directly benefit from interactions with experts in eukaryotic protein expression (Gaudet laboratory) and in the use of optical tweezers (Corey laboratory). I will also receive advice from Dr. Wesley Wong, member of my advisory committee and an expert in single-molecule force spectroscopy. All members of these laboratories will provide the perfect and unique interdisciplinary environment required for my training. In addition, I will have access to outstanding facilities at both the Corey and Gaudet laboratories. I will be using state-of-the-art equipment required for single-molecule force spectroscopy experiments, eukaryotic protein production, and X-ray crystallography. After completing the mentored phase, I will have enough expertise in a broad repertoire of computational and experimental techniques to start an independent career investigating the molecular mechanisms underlying the function of the entire tip link as outlined below. (Aim 1) Optical tweezers will be use to probe the strength of a dimeric bond formed by the tips of cadherin-23 and protocadherin-15, and of an expected tetrameric bond formed by longer domains of these molecules. The experiments may not only reveal unbinding forces, but also intermediate states and, along with simulations, molecular mechanisms associated with formation and rupture of the bond. The rupture force of the tip link bond will provide clues about the consequences of loud sound stimuli on hair cell function. (Aim 2) A structural model for the entire extracellular tip link will be obtained, to characterize heteregeous EC repeats, establish their elasticity, and determine whether interdigitation involving multiples EC repeats is feasible. Results will conclusively determine whether the tip link can be the hair-cell gating spring and provide a structural framework to interpret multiple deafness mutations. (Aim 3) The mechanical response of protocadherin-15's transmembrane domain embedded in a lipid bilayer, along with a membrane-gated channel, will be simulated to test whether force is conveyed directly, or indirectly through the lipids, to hair-cell transduction channels. Results wil provide in silico and in vitro platforms to test models of MS channel activation and clarify the controversial role of membrane tension in inner-ear mechanotransduction.
描述(申请人提供):毛细胞尖端连接是内耳机械转导装置的重要组成部分。在过去的四年里,我的研究主要集中在毛细胞尖端连接的结构生物学上。我计划继续这方面的研究,因为我的长期职业目标是领导一个多学科的研究小组,研究毛细胞机械转导的分子机制。 我在博士后培训期间所做的研究工作回答了关于末端连接片段的弹性以及钙粘蛋白-23和原钙粘蛋白-15末端如何相互作用的一些关键问题 和彼此在一起。然而,这项工作也为探索整个尖端环节的生物物理学打开了大门,并对尖端环节的强度和弹性提出了需要实验验证的计算预测。我的短期目标是确定整个尖端环节的结构,通过实验测量尖端-环节结合的强度,并建立机械力如何通过尖端环节传递到毛细胞转导通道。 为了实现我的短期目标,在K99指导阶段,我将学习如何使用毕赤酵母系统表达涉及多个EC重复的长细胞外末端连接片段。Gaudet实验室拥有在该系统中大规模表达蛋白质的专业知识和工具 与此同时,我将学习如何使用科里实验室设置的光学镊子。这包括学习如何使用和对准激光,如何设计和合成分子和功能化的微米级聚苯乙烯微珠之间的连接物,以及进行实际实验。 培训将在两个实验室进行,有一群杰出而特别友好的研究人员。我将直接受益于与真核蛋白质表达专家的互动(Gaudet实验室)和光学镊子的使用(Corey实验室)。我还将听取我的顾问委员会成员、单分子力谱专家韦斯利·王博士的建议。所有这些实验室的成员都将为我的培训提供完美和独特的跨学科环境。 此外,我还可以使用科里和高德特实验室的杰出设施。我将使用单分子力谱实验、真核蛋白质生产和X射线结晶学所需的最先进的设备。 在完成指导阶段后,我将在广泛的计算和实验技术方面拥有足够的专业知识,开始独立的职业生涯,研究下面概述的整个TIP链接功能的分子机制。 (目标1)光钳将被用来探测由钙粘蛋白-23和原钙粘蛋白-15末端形成的二聚键的强度,以及由这些分子的较长结构域形成的预期四聚键的强度。这些实验不仅可以揭示解结力,还可以揭示中间态,以及与键的形成和断裂相关的分子机制。尖端连接键的断裂力将提供关于强烈声音刺激对毛细胞功能影响的线索。 (目的2)将获得整个细胞外末端链的结构模型,以表征不同的EC重复序列,建立其弹性,并确定涉及多个EC重复序列的交指是否可行。结果将最终确定尖端连接是否可能是毛细胞门控弹簧,并提供一个结构框架来解释多种耳聋突变。 (目的3)模拟原钙粘附素-15‘S跨膜结构域与膜门控通道的力学反应,以测试力是直接或间接通过脂类传递到毛细胞转导通道。结果将在硅胶和体外平台上测试MS通道激活模型,并阐明膜张力在内耳机械转导中的有争议的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcos Sotomayor其他文献

Marcos Sotomayor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcos Sotomayor', 18)}}的其他基金

Nanomechanics of inner-ear hair-cell transduction
内耳毛细胞转导的纳米力学
  • 批准号:
    10539982
  • 财政年份:
    2016
  • 资助金额:
    $ 24.9万
  • 项目类别:
Nanomechanics of Inner Ear Hair Cell Transduction
内耳毛细胞转导的纳米力学
  • 批准号:
    9889926
  • 财政年份:
    2016
  • 资助金额:
    $ 24.9万
  • 项目类别:
Nanomechanics of inner-ear hair-cell transduction
内耳毛细胞转导的纳米力学
  • 批准号:
    10670423
  • 财政年份:
    2016
  • 资助金额:
    $ 24.9万
  • 项目类别:
FORCE SPECTROSCOPY AND STRUCTURAL BIOLOGY OF HAIR-CELL TIP LINKS
毛细胞尖端连接的力谱和结构生物学
  • 批准号:
    8664697
  • 财政年份:
    2013
  • 资助金额:
    $ 24.9万
  • 项目类别:
FORCE SPECTROSCOPY AND STRUCTURAL BIOLOGY OF HAIR-CELL TIP LINKS
毛细胞尖端连接的力谱和结构生物学
  • 批准号:
    8353261
  • 财政年份:
    2012
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了