Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
基本信息
- 批准号:8729611
- 负责人:
- 金额:$ 44.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-05 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgrochemicalsAlgorithmsAnalytical ChemistryAquacultureArchitectureAreaBacteriaBiochemicalBiochemistryBiologicalBiological AssayBiological FactorsBiomedical ResearchBreathingChemicalsChromatographyClinical TrialsCollectionComplexCryptophycinCuracin ACyanobacteriumCyclic PeptidesDataDetectionDevelopmentDolastatin 10EffectivenessEnvironmentFamilyFutureGene ClusterGene ExpressionGenesGenetic MarkersGenomeGenomicsGenotypeGoalsHigh Pressure Liquid ChromatographyImageInflammationInformaticsInvertebratesInvestigationKnowledgeLeadLibrariesLifeMapsMarinesMass Spectrum AnalysisMetabolismMethodologyMethodsMolecularMolecular StructureNatural Product DrugNitrogenPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologyPlayPoriferaProcessProductionProkaryotic CellsPropertyResearchRoleSamplingScienceSeriesSourceSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructureTaxonTechniquesTechnologyTherapeuticToxic effectUrochordataanaloganalytical methodbasebiological systemscancer cellcostdrug discoverygenome sequencingimprovedinnovationinnovative technologiesinsightinterestmathematical algorithmmembermicroorganismneuroregulationnovelpublic health relevanceresearch studyscale upsuccess
项目摘要
DESCRIPTION (provided by applicant): Key to the process of pharmaceutical lead compound discovery from natural sources is the effective access and characterization of highly diverse molecular structures. In this regard, exploration of the marine environment for bioactive natural products is revealing new vistas in natural products chemical diversity. In this application we propose the development of innovative technologies and knowledge, principally based on LC-MS/MS data and 'molecular mapping', which will improve the effectiveness of natural products drug discovery efforts. This will enable a much improved capacity to discover new molecular diversity or analogs in desired structure classes. We will develop an understanding of the degree of expression of natural product pathways in cultured strains, and will develop novel methods by which to upregulate low or non-expressing biosynthetic gene clusters. As a result of these studies, new marine cyanobacterial natural products will be discovered and their biomedical properties will be characterized. To accomplish these goals we have the following four specific aims: 1) To use LC-MS/MS profiling of cyanobacterial extracts and pure compounds, followed by molecular mapping, to create a representation of the chemical universe of our samples. 2) To use QPCR and genome sequencing technologies to evaluate the degree of expression of natural product pathways in our cultured marine cyanobacteria, and to connect Natural Product Super-producing strains of cyanobacteria with their genotypes. This latter information can be used to find genetic markers that can be rapidly deployed to locate this phenotype in new cyanobacterial cultures and collections. 3) To use a suite of imaginative methods to transcriptionally activate cryptic natural product biosynthetic gene clusters in strains
determined in Aim 2 to possess un-expressed natural products capacity, and to analyze the resulting elicited secondary metabolomes by mass spectrometry and molecular mapping. 4) To isolate members of new families of compounds detected in Aims 1, as well as newly expressed natural products from Aim 3, and rigorously establish molecular structures using advanced analytical methods. Through the course of these four specific aims, this collaborative group will explore a number of innovative methods and approaches in the natural products sciences, including MS/MS molecular mapping, genomic analysis of natural products expression, elicitation of new natural products expression, connection of natural product-rich phenotypes to their corresponding genotypes, imaging mass spectrometry of complex consortiums of species wherein natural product pathways are activated, and novel automated MS approaches to natural products characterization. All of these methods are focused on improving the detection and characterization of the molecular diversity present in microorganisms, in this case, marine cyanobacteria. This molecular diversity continues to be an important source of inspirational molecules for biomedical research and drug discovery.
描述(由申请人提供):从天然来源发现药物先导化合物的过程的关键是有效获取和表征高度多样化的分子结构。在这方面,在海洋环境中探索生物活性天然产品,正在揭示天然产品化学多样性的新前景。在本申请中,我们提出了创新技术和知识的发展,主要基于LC-MS/MS数据和“分子图谱”,这将提高天然产物药物发现工作的有效性。这将大大提高发现新的分子多样性或所需结构类别的类似物的能力。我们将发展的自然产物途径在培养菌株的表达程度的理解,并将开发新的方法,通过它来上调低或非表达的生物合成基因簇。作为这些研究的结果,新的海洋蓝藻天然产物将被发现,其生物医学特性将被表征。为了实现这些目标,我们有以下四个具体目标:1)使用蓝藻提取物和纯化合物的LC-MS/MS分析,然后进行分子作图,以创建我们样品的化学宇宙的表示。2)利用QPCR和基因组测序技术对培养的海洋蓝藻中天然产物途径的表达程度进行评估,并将蓝藻天然产物超级生产菌株与其基因型联系起来。后者的信息可以用来找到遗传标记,可以快速部署,以定位新的蓝藻培养和收藏的表型。3)利用一套富有想象力的方法转录激活菌株中隐藏的天然产物生物合成基因簇
目的2中确定具有未表达的天然产物能力,并通过质谱和分子作图分析所得的引发的次级代谢组。4)分离目标1中检测到的新化合物家族成员以及目标3中新表达的天然产物,并使用先进的分析方法严格建立分子结构。通过这四个具体目标,该合作小组将探索天然产物科学中的许多创新方法和途径,包括MS/MS分子图谱,天然产物表达的基因组分析,新天然产物表达的诱导,天然产物丰富表型与其相应基因型的连接,其中天然产物途径被激活的物种的复杂聚生体的成像质谱,以及天然产物表征的新型自动化MS方法。所有这些方法都集中在改善微生物中存在的分子多样性的检测和表征,在这种情况下,海洋蓝藻。这种分子多样性仍然是生物医学研究和药物发现的灵感分子的重要来源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PIETER C DORRESTEIN其他文献
PIETER C DORRESTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PIETER C DORRESTEIN', 18)}}的其他基金
Reverse Metabolomics for the Discovery of Disease Associated Microbial Molecules
用于发现疾病相关微生物分子的反向代谢组学
- 批准号:
10651361 - 财政年份:2023
- 资助金额:
$ 44.07万 - 项目类别:
Cross Repository Metabolomics Data and Workflow Integration
跨存储库代谢组学数据和工作流程集成
- 批准号:
10576731 - 财政年份:2022
- 资助金额:
$ 44.07万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
8562582 - 财政年份:2013
- 资助金额:
$ 44.07万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
9167954 - 财政年份:2013
- 资助金额:
$ 44.07万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
9066743 - 财政年份:2013
- 资助金额:
$ 44.07万 - 项目类别:
Experiment based genome mining of ribosomal natural products
基于实验的核糖体天然产物基因组挖掘
- 批准号:
8297118 - 财政年份:2012
- 资助金额:
$ 44.07万 - 项目类别:
Experiment based genome mining of ribosomal natural products
基于实验的核糖体天然产物基因组挖掘
- 批准号:
8625312 - 财政年份:2012
- 资助金额:
$ 44.07万 - 项目类别:
Experiment based genome mining of ribosomal natural products
基于实验的核糖体天然产物基因组挖掘
- 批准号:
8448101 - 财政年份:2012
- 资助金额:
$ 44.07万 - 项目类别:
Experiment based genome mining of ribosomal natural products
基于实验的核糖体天然产物基因组挖掘
- 批准号:
8838182 - 财政年份:2012
- 资助金额:
$ 44.07万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.07万 - 项目类别:
Research Grant