EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
基本信息
- 批准号:8772667
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsAntineoplastic AgentsBiologyBoxingCancer CenterCancer Research NetworkCessation of lifeClinicalClinical OncologyClinical TrialsCollaborationsCommon Terminology Criteria for Adverse EventsComprehensive Cancer CenterComputerized Medical RecordDataDetectionDiscipline of NursingDiseaseDrug toxicityElementsEventFutureGoalsHealth PromotionHematologyHospitalsInformaticsInjuryInpatientsInterventionKnowledgeLanguageLeadLeftMachine LearningMalignant NeoplasmsManualsMapsMarketingMassachusettsMedicalMethodsMonitorMorbidity - disease rateNamesNatural Language ProcessingOutpatientsPatientsPatternPharmaceutical PreparationsPharmacoepidemiologyPreventionPublic HealthRecordsReportingResearchResearch PersonnelResourcesRiskSafetySeveritiesSignal TransductionStructureSystemTerminologyTestingTherapeuticToxic effectUnited StatesUnited States Food and Drug AdministrationUniversitiesWeightWorkabstractingdisorder preventionfirewallimprovedinnovationinsightlenalidomidemedical schoolsmortalitynoveloncologyopen sourcepatient safetypost-marketpublic health relevanceresponsetool
项目摘要
DESCRIPTION (provided by applicant): Adverse drug events (ADEs) result in substantial patient morbidity and lead to over 100,000 deaths yearly. The timely identification of previously unknown toxicities of cancer drugs is an important, unsolved problem. In the United States, 20% of the 548 drugs introduced into the market between 1975 and 1999 were either withdrawn or acquired a new "black box" warning during the 25-year period following initial approval by the Food and Drug Administration. Adverse drug events are an important cause of morbidity and mortality in patients, yet 95% of ADEs are unreported, leading to delays in the detection of previously unknown ADEs and underestimation of the risk to known ADEs. It is known that Electronic Medical Record (EMR), discharge summaries, and lab results contain ADE information and biomedical natural language processing (BioNLP) provides automated tools that facilitate chart review and thus improve patient surveillance and post-marketing pharmacovigilance. The objectives for this proposal are to develop "intelligent" BioNLP approaches to extract disease, medication, and structured ADE information from EMRs, and then evaluate extracted ADEs for detecting known ADE types as well as clinically unrecognized or novel ADEs whose pattern or effect have not been previously identified.
描述(由申请人提供):药物不良事件(ADE)导致大量患者发病,每年导致超过100,000例死亡。及时识别癌症药物的先前未知的毒性是一个重要的,未解决的问题。在美国,1975年至1999年期间引入市场的548种药物中有20%在食品和药物管理局首次批准后的25年期间被撤回或获得新的“黑匣子”警告。药物不良事件是导致患者发病和死亡的重要原因,但95%的ADE未报告,导致先前未知ADE的检测延迟和已知ADE风险的低估。众所周知,电子病历(EMR)、出院总结和实验室结果包含ADE信息,生物医学自然语言处理(BioNLP)提供了自动化工具,有助于病历审查,从而改善患者监测和上市后药物警戒。该提案的目的是开发“智能”BioNLP方法,从EMR中提取疾病、药物和结构化ADE信息,然后评价提取的ADE,以检测已知ADE类型以及临床上未识别或新型ADE(其模式或效应先前尚未确定)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONG YU其他文献
HONG YU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONG YU', 18)}}的其他基金
Social and behavioral determinants of health and Alzheimer’s Disease: Cohort study of the US military veteran population
健康和阿尔茨海默病的社会和行为决定因素:美国退伍军人群体的队列研究
- 批准号:
10591049 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10656321 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10428629 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10251336 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Improving Suicide Prediction using NLP-Extracted Social Determinants of Health
使用 NLP 提取的健康社会决定因素改善自杀预测
- 批准号:
10100989 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Resource Curation and Evaluation for EHR Note Comprehension
EHR 笔记理解的资源管理和评估
- 批准号:
9925807 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Resource Curation and Evaluation for EHR Note Comprehension
EHR 笔记理解的资源管理和评估
- 批准号:
9794757 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Systems for Helping Veterans Comprehend Electronic Health Record Notes
帮助退伍军人理解电子健康记录笔记的系统
- 批准号:
9768225 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Systems for Helping Veterans Comprehend Electronic Health Record Notes
帮助退伍军人理解电子健康记录笔记的系统
- 批准号:
9894743 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant