MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
基本信息
- 批准号:8785593
- 负责人:
- 金额:$ 66.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsBiological PreservationBiopsyCancer PatientCharacteristicsClinicalClinical TrialsCollaborationsDataDevelopmentDiffusionDiseaseEarly treatmentGene Expression ProfileGene Expression ProfilingGenesGeneticHabitatsHistologyImageIndolentLesionLife ExpectancyMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateModelingMolecularMolecular AbnormalityMultiparametric AnalysisNeoplasm MetastasisOligonucleotidesOutcomePatient MonitoringPatientsPatternPhasePhase II Clinical TrialsPopulationProstateProstatectomyQuality of lifeRadiation therapyRadical ProstatectomyRadiogenomicsRecommendationReportingRiskSamplingTechniquesTestingTimeTissuesTumor TissueUltrasonographybasecancer cellchromosome 22 supernumerary markerdensitydesignhigh riskhigh throughput analysismennovelprognosticprospectivepublic health relevancetumor
项目摘要
DESCRIPTION (provided by applicant): We propose to study patients who are candidates for active surveillance (AS) to identify imaging and gene expression signatures that distinguish indolent from aggressive prostate cancer and to better understand the mechanisms underlying progression. We will apply novel MRI techniques (i) for quantitative multiparametric MRI (MP-MRI) findings to define "habitats" within the prostate; (ii) to guide prostate biopsies to MP-MRI defined lesions and determine histopathologic associations with habitats; (iii) to develop signatures based on high throughput analysis of imaging features (radiomics); (iv) to relate biopsy oligonucleotide gene expression signatures to inform on the molecular characteristics associated with imaging signatures (radiogenomics); and (v) develop models of progression (conversion to treatment) that incorporate clinical, histopathologic, imaging signatures and gene expression signatures. A Phase II AS trial of prostate cancer patients is designed to acquire MP-MRI, prostate tissue and biofluids at yearly intervals to relate to MP-MRI results and the primary endpoint of progression. The techniques that we propose have the potential to better identify indolent versus aggressive disease, thereby reducing the effects of overdiagnosis. The Specific Aims are: Aim 1. To assess the overall rate and temporal distribution of progression in men undergoing MP-MRI assessments and directed prostate biopsies for AS in a prospective Phase II trial. Aim 2. To establish MP-MRI habitats and use radiomics analysis of MP-MRI features to develop signatures related to adverse histopathologic parameters and patient progression. Aim 3. To molecularly characterize the MP-MRI-directed prostate biopsies obtained, develop a gene expression signature of indolent versus aggressive prostate cancers, and relate this information to the radiomics-derived signatures. We propose that quantitative MP-MRI parameters will be representative of histopathologic and molecular parameters and be an important adjunct to defining risk of progression and, consequently, reduce the rate of unnecessary biopsies.
描述(由申请人提供):我们建议研究主动监测(AS)候选者的患者,以确定区分惰性前列腺癌和侵袭性前列腺癌的影像和基因表达特征,并更好地了解进展的机制。我们将应用新型 MRI 技术 (i) 进行定量多参数 MRI (MP-MRI) 结果来定义前列腺内的“栖息地”; (ii) 引导前列腺活检找到 MP-MRI 定义的病变并确定与栖息地的组织病理学关联; (iii) 基于成像特征的高通量分析(放射组学)开发特征; (iv) 将活检寡核苷酸基因表达特征联系起来,以了解与成像特征相关的分子特征(放射基因组学); (v) 开发包含临床、组织病理学、成像特征和基因表达特征的进展模型(转化为治疗)。针对前列腺癌患者的 II 期 AS 试验旨在每年采集 MP-MRI、前列腺组织和生物液,以与 MP-MRI 结果和进展的主要终点相关。我们提出的技术有可能更好地识别惰性疾病与侵袭性疾病,从而减少过度诊断的影响。具体目标是: 目标 1. 在一项前瞻性 II 期试验中,评估接受 MP-MRI 评估和针对 AS 的定向前列腺活检的男性进展的总体速率和时间分布。目标 2. 建立 MP-MRI 栖息地并使用 MP-MRI 特征的放射组学分析来开发与不良组织病理学参数和患者进展相关的特征。目标 3. 对获得的 MP-MRI 指导的前列腺活检进行分子表征,开发惰性前列腺癌与侵袭性前列腺癌的基因表达特征,并将该信息与放射组学衍生的特征相关联。我们建议定量 MP-MRI 参数将代表组织病理学和分子参数,并成为确定进展风险的重要辅助手段,从而降低不必要的活检率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Pollack其他文献
Alan Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Pollack', 18)}}的其他基金
MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
- 批准号:
10481836 - 财政年份:2019
- 资助金额:
$ 66.75万 - 项目类别:
MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
- 批准号:
10018835 - 财政年份:2019
- 资助金额:
$ 66.75万 - 项目类别:
MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
- 批准号:
10249261 - 财政年份:2019
- 资助金额:
$ 66.75万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10172868 - 财政年份:2018
- 资助金额:
$ 66.75万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10460226 - 财政年份:2018
- 资助金额:
$ 66.75万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10647023 - 财政年份:2018
- 资助金额:
$ 66.75万 - 项目类别:
MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
- 批准号:
9531278 - 财政年份:2014
- 资助金额:
$ 66.75万 - 项目类别:
MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
- 批准号:
8895872 - 财政年份:2014
- 资助金额:
$ 66.75万 - 项目类别:
MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer
前列腺癌的 MRI 引导放射治疗和生物标志物
- 批准号:
8125083 - 财政年份:2010
- 资助金额:
$ 66.75万 - 项目类别:
MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer
前列腺癌的 MRI 引导放射治疗和生物标志物
- 批准号:
8007509 - 财政年份:2010
- 资助金额:
$ 66.75万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 66.75万 - 项目类别:
Research Grant