MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
基本信息
- 批准号:10018835
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAttentionBiological MarkersBiopsyBloodBody FluidsCellsCessation of lifeCharacteristicsClassificationClinicalClinical TrialsCollaborationsComplementDataDetectionDiagnosisDiagnosticEarly Detection Research NetworkEarly DiagnosisEarly identificationEvolutionFundingGene ExpressionGenomicsGlandGleason Grade for Prostate CancerGoalsHabitatsHealthcare SystemsHistopathologic GradeHistopathologyImageImaging TechniquesIndividualIndolentInformation SystemsKineticsLaboratoriesLearningLesionMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMethodsModelingMultiparametric AnalysisNeoplasm Circulating CellsNeoplasm MetastasisOutcomePathologicPatientsPerformancePredictive ValueProceduresProcessProstateProstatectomyProtocols documentationPublishingRadiogenomicsReportingResearch PersonnelRiskRisk stratificationSamplingScoring MethodScreening for Prostate CancerSerumSystemTechniquesTestingTissuesTumor VolumeUltrasonographyUniversitiesUrineValidationVendorWorkadverse outcomebaseblood-based biomarkercancer riskcohortcostdeep learningdigitalearly detection biomarkersgenomic signaturehigh riskimaging biomarkerimprovedmacrophagemennovelovertreatmentprognosticprospectiveprostate biopsyprostate lesionsquantitative imagingradiomicsreconstructionrectaltooltumortumor heterogeneityurinary
项目摘要
Abstract
Oversampling and overdiagnosis of prostate cancer are significant management and cost issues that
burden our health care system and the individual at risk with unnecessary biopsies and potential complications.
The proposed studies will validate recent advances in quantitative prostate multiparametric MRI (mpMRI)
techniques, blood biomarkers of aggressive prostate cancer and radiogenomics that relate to increased
aggressive cancer risk by our group and collaborators. The overarching goal is to increase the negative
predictive value (NPV) for significant prostate cancer and consequently reduce unnecessary biopsies. Central
to the proposal are key collaborations between investigators from the Consortium for Imaging and Biomarkers
(CIB), Early Detection Research Network (EDRN), and Jet Propulsion Laboratories (JPL).
Novel automated techniques for quantitative analysis of mpMRI that identify prostate habitats at risk of
harboring significant prostate cancer (Gleason score 3+4 and above or Grade Group (GG)2+) will be combined
with improvements in mpMRI-ultrasound fusion biopsies. Our automated pixel-by-pixel 3D prostate habitat risk
scoring (HRS) system is superior to the standard prostate lesion classification system, PIRADSv2, and is
hypothesized to improve the Negative Predictive Value (NPV) for significant GG2+ cancers (Aim 1). Radiomics
will be applied in Aim 1 to refine HRS in the University of Miami MDSelect protocol of 250 men (discovery=150;
validation=100).
Just as PIRADSv2 is suboptimal because it does not incorporate quantitative imaging information in
risk stratification, models of risk based only on histopathologic grading ignore the underlying genomic
determinants of outcome. We have shown that radiomics features are associated with underlying gene
expression markers of adverse outcome. We propose in Aim 2 to apply newer criteria that incorporate
Decipher® score with clinical-pathologic factors to improve the identification of aggressive prostate cancer.
Radiomic features associated with these published criteria, termed the Spratt criteria, will improve the NPV for
nonaggressive prostate cancer in the MDSelect cohort.
We will also collaborate with investigators involved in the EDRN ID-430 clinical trial to test our models
in a cohort (n=200) in a less rigorously controlled multi-institutional group with more variability in imaging
techniques, vendors and machines.
There is also opportunity to further improve risk classification through the analysis of blood-based
markers (Aim 3) such as 4Kscore, circulating tumor cells (CTCs) and circulating cancer associated
macrophage like (CAML) cells that are early biomarkers of aggressive cancer. The proposed work will test the
incremental benefit of adding these serum-based biomarkers to improve the NPV models for significant
prostate cancer.
摘要
前列腺癌的过度采样和过度诊断是重要的管理和成本问题,
不必要的活检和潜在的并发症给我们的卫生保健系统和处于危险中的个人带来负担。
拟议的研究将验证定量前列腺多参数MRI(mpMRI)的最新进展
技术,侵袭性前列腺癌的血液生物标志物和放射基因组学,
积极的癌症风险由我们的小组和合作者。首要目标是增加负面影响
预测值(NPV),从而减少不必要的活检。中央
该提案的关键是来自成像和生物标志物联盟的研究人员之间的合作
(CIB)早期探测研究网络(EDRN)和喷气推进实验室(JPL)。
用于定量分析mpMRI的新型自动化技术,可识别有前列腺增生风险的前列腺生境
将合并患有显著前列腺癌(Gleason评分3+4及以上或分级组(GG)2+)的患者
在mpMRI超声融合活检方面取得了进步。我们的自动逐像素3D前列腺栖息地风险
评分(HRS)系统上级于标准前列腺病变分类系统PIRADSv 2,
假设用于改善显著的GG 2+癌症的阴性预测值(NPV)(目的1)。放射组学
将应用于目标1,以完善迈阿密大学MDSelect方案中250名男性的HRS(发现=150;
validation=100)。
正如PIRADSv 2是次优的,因为它不包含定量成像信息,
风险分层,仅基于组织病理学分级的风险模型忽略了潜在的基因组
结果的决定因素。我们已经表明,放射组学特征与潜在基因相关,
不良结果的表达标志物。我们在目标2中建议采用更新的标准,
Decipher®评分结合临床病理因素,以提高侵袭性前列腺癌的识别率。
与这些公布的标准相关的放射组学特征,称为Spratt标准,将提高NPV,
MDSelect队列中的非侵袭性前列腺癌。
我们还将与参与EDRN ID-430临床试验的研究人员合作,以测试我们的模型
在一个队列(n=200)中,在一个控制不太严格的多机构组中,成像变异性更大
技术、供应商和机器。
还有机会通过分析基于血液的疾病,
标记物(Aim 3),如4K评分、循环肿瘤细胞(CTC)和循环癌症相关的
巨噬细胞样(CAML)细胞是侵袭性癌症的早期生物标志物。拟议的工作将测试
添加这些基于血清的生物标志物以改善NPV模型的增量益处,
前列腺癌
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Pollack其他文献
Alan Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Pollack', 18)}}的其他基金
MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
- 批准号:
10481836 - 财政年份:2019
- 资助金额:
$ 60.47万 - 项目类别:
MRI Imaging and Biomarkers for Early Detection of Aggressive Prostate Cancer
用于早期检测侵袭性前列腺癌的 MRI 成像和生物标志物
- 批准号:
10249261 - 财政年份:2019
- 资助金额:
$ 60.47万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10172868 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10460226 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
UM Calabresi Clinical Oncology Research Career Development Award
UM Calabresi 临床肿瘤学研究职业发展奖
- 批准号:
10647023 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
- 批准号:
8785593 - 财政年份:2014
- 资助金额:
$ 60.47万 - 项目类别:
MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
- 批准号:
9531278 - 财政年份:2014
- 资助金额:
$ 60.47万 - 项目类别:
MRI Imaging and Genetic Signatures to Manage Prostate Cancer Overdiagnosis
MRI 成像和基因特征管理前列腺癌过度诊断
- 批准号:
8895872 - 财政年份:2014
- 资助金额:
$ 60.47万 - 项目类别:
MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer
前列腺癌的 MRI 引导放射治疗和生物标志物
- 批准号:
8125083 - 财政年份:2010
- 资助金额:
$ 60.47万 - 项目类别:
MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer
前列腺癌的 MRI 引导放射治疗和生物标志物
- 批准号:
8007509 - 财政年份:2010
- 资助金额:
$ 60.47万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Research Grant