Structure and function of RNase P
RNase P 的结构和功能
基本信息
- 批准号:8600283
- 负责人:
- 金额:$ 34.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAcuteAreaBindingBinding SitesBiological ProcessCatalysisCatalytic RNACell physiologyCellsChargeChemicalsClinicalComplexDataDiagnosticEnzymesFunctional RNAGene Expression RegulationGlycine decarboxylaseGoalsHigh-Throughput Nucleotide SequencingIndividualInvestigationIonsIsotopesKineticsMeasurementMetalsMethodsModelingModificationNucleotidesPharmaceutical PreparationsProcessPropertyProtein SubunitsProteinsPublicationsRNARNA ProcessingRNA biosynthesisRNase PRaman Spectrum AnalysisReactionResearchRibonucleoproteinsRoleSiteSolutionsSpecific qualifier valueStructureSubstrate SpecificitySystemTestingTimeVariantbasebiophysical propertieschemical propertydesignfollow-upfunctional groupinnovationinorganic phosphateinterestmolecular recognitionnovelprotein complextRNA Precursortooluptake
项目摘要
DESCRIPTION (provided by applicant): There has been an explosive increase in our understanding of RNA structure and ground breaking advances in defining the roles of RNAs in gene expression and regulation. Yet, our understanding of the chemical and biophysical properties of RNA that determine its biological function has advanced less quickly. This deficiency is due to the complexity of the problem, but also due to the lack of sufficient experimental tools for revealing mechanistic detail. The ribonucleoprotein enzyme ribonuclease P (RNase P), which catalyzes the essential 5' end maturation of tRNA precursors (ptRNAs), has emerged as an elegantly simple and broadly useful system to understand RNA structure and function including catalysis. The long term goal of our project is to understand, at a chemical level of detail, how the RNase P ribonucleoprotein achieves its enormous rate enhancement and its multiple substrate specificity. Essential to both processes is site-specific binding of Mg2+ ions. Integrated into our experimental analyses of RNase P are innovative research tools designed to overcome key experimental limitations in three areas: defining RNA-metal ion interactions (Raman spectroscopy); identifying catalytic interactions (kinetic isotope effects); and understanding multiple substrate recognition (high-throughput sequencing). RNase P, like many enzymes, processes multiple different substrates in the cell. This property raises the general problem of how the enzyme distinguishes between cognate and non-cognate substrates and how it accommodates the variation in structure between different substrates. We are comparing the kinetics of different ptRNA processing reactions, and applying a novel high-throughput method to identify the ptRNA sequences P that control optimal catalytic efficiency. Despite intense investigation, the catalytic modes employed by ribozymes, including RNase P, are not well understood or characterized experimentally. We are pursuing detailed mechanistic analyses to test proposed active site interactions by observing how site-specific functional group modifications in P RNA and ptRNA influence the charge distribution in the transition state. The interaction of solution Mg2+ ions is essential for the function of all RNAs, and establishing the relationships between the binding of individual ions or classes of ions is an area of intense interest. However, like most RNAs the linkages between individual ion interactions in P RNA, and the critical enzyme functions of binding and catalysis are not well understood. In the last project period, we developed a means to detect and quantify metal ion interactions with RNA phosphates using Raman spectroscopy. To follow up on these advances we are using Raman spectroscopy and direct ion association measurements to detect the uptake of ions upon formation of the ES complex and to test the roles of P4 residues in ion binding. Additionally we are developing methods to detect ion binding at individual phosphates using isotope-edited Raman.
描述(由申请人提供):我们对RNA结构的理解有了爆炸性的增长,在定义RNA在基因表达和调控中的作用方面取得了突破性的进展。然而,我们对决定其生物功能的RNA的化学和生物物理特性的理解进展得不那么快。这一缺陷是由于问题的复杂性,但也是由于缺乏足够的实验工具来揭示机理细节。核糖核蛋白酶核糖核酸酶P(RNase P)催化tRNA前体(ptRNA)的基本5'末端成熟,已成为理解RNA结构和功能(包括催化)的优雅简单且广泛有用的系统。我们项目的长期目标是在化学细节水平上了解RNase P核糖核蛋白如何实现其巨大的速率增强和多底物特异性。这两个过程的关键是Mg 2+离子的位点特异性结合。我们的RNase P实验分析中集成了创新的研究工具,旨在克服三个领域的关键实验限制:定义RNA-金属离子相互作用(拉曼光谱);识别催化相互作用(动力学同位素效应);以及理解多底物识别(高通量测序)。RNase P与许多酶一样,在细胞中处理多种不同的底物。这一性质提出了酶如何区分同源和非同源底物以及它如何适应不同底物之间的结构变化的一般问题。我们正在比较不同的ptRNA加工反应的动力学,并应用一种新的高通量方法来识别控制最佳催化效率的ptRNA序列P。尽管进行了大量的研究,但核酶(包括RNase P)所采用的催化模式还没有得到很好的理解或实验表征。我们正在进行详细的机制分析,以测试拟议的活性位点的相互作用,通过观察P RNA和ptRNA中的位点特异性官能团修饰如何影响过渡态的电荷分布。溶液Mg 2+离子的相互作用对于所有RNA的功能都是必不可少的,并且建立单个离子或离子类别之间的结合之间的关系是一个非常感兴趣的领域。然而,与大多数RNA一样,P RNA中单个离子相互作用之间的联系,以及结合和催化的关键酶功能尚未得到很好的理解。在上一个项目期间,我们开发了一种方法来检测和量化金属离子与RNA磷酸盐的相互作用,使用拉曼光谱。为了跟进这些进展,我们正在使用拉曼光谱和直接离子缔合测量,以检测离子的吸收后形成的ES复合物,并测试P4残基在离子结合中的作用。此外,我们正在开发使用同位素编辑的拉曼检测单个磷酸盐离子结合的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E. HARRIS其他文献
MICHAEL E. HARRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E. HARRIS', 18)}}的其他基金
Specificity in Substrate Recognition and Catalysis by RNA Processing Enzymes
RNA 加工酶对底物识别和催化的特异性
- 批准号:
10190963 - 财政年份:2018
- 资助金额:
$ 34.23万 - 项目类别:
Specificity in Substrate Recognition and Catalysis by RNA Processing Enzymes
RNA 加工酶对底物识别和催化的特异性
- 批准号:
10434828 - 财政年份:2018
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic Enzymology of Phosphoryl Transfer Enzymes
磷酰基转移酶的机械酶学
- 批准号:
8697309 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic Enzymology of Phosphoryl Transfer Enzymes
磷酰基转移酶的机械酶学
- 批准号:
9253409 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic enzymology of phosphoryl transfer enzymes
磷酰基转移酶的机械酶学
- 批准号:
8329007 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic Enzymology of Phosphoryl Transfer Enzymes
磷酰基转移酶的机械酶学
- 批准号:
9105386 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic Enzymology of Phosphoryl Transfer Enzymes
磷酰基转移酶的机械酶学
- 批准号:
8909608 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Mechanistic enzymology of phosphoryl transfer enzymes
磷酰基转移酶的机械酶学
- 批准号:
8184531 - 财政年份:2011
- 资助金额:
$ 34.23万 - 项目类别:
Determination of enzyme isotope effects by tandem ESI-Q/TOF mass spectrometry
通过串联 ESI-Q/TOF 质谱测定酶同位素效应
- 批准号:
7191481 - 财政年份:2007
- 资助金额:
$ 34.23万 - 项目类别:
Determination of enzyme isotope effects by tandem ESI-Q/TOF mass spectrometry
通过串联 ESI-Q/TOF 质谱测定酶同位素效应
- 批准号:
7345472 - 财政年份:2007
- 资助金额:
$ 34.23万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant