A biomimetic reverse thermal gel for optic nerve regeneration
用于视神经再生的仿生反向热凝胶
基本信息
- 批准号:8770848
- 负责人:
- 金额:$ 21.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAddressAffectAmericanAttentionBehaviorBiocompatible MaterialsBiomimeticsBlindnessBody TemperatureCannulasCell Culture TechniquesCell DeathCell ProliferationCell SurvivalCharacteristicsCommunitiesCoupledDevelopmentDrug FormulationsEducational process of instructingEnsureEnvironmentExhibitsFunctional disorderGelGlaucomaGrowthHealthImplantIn SituIn VitroInflammatory ResponseInjectableInjection of therapeutic agentInjuryLeadLinkLiquid substanceLocationMechanicsMedicalMedicineMethodologyModelingMolecular ConformationMonitorNatural regenerationNeedlesNerveNerve CrushNerve RegenerationNeurodegenerative DisordersNeuropathyOperative Surgical ProceduresOptic NerveOptic Nerve InjuriesOutcomePatientsPeptidesPharmaceutical PreparationsPharmacological TreatmentPhysiologic Intraocular PressurePolymersPositioning AttributeProceduresPropertyRGD (sequence)ReactionResearchRetinalRetinal Ganglion CellsRodentSiteSol-Gel Phase TransitionsSolidSolutionsStaining methodStainsSystemTemperatureTherapeuticTimeTissuesVisionVisual AcuityVisual FieldsWorkalternative treatmentaqueousaxon growthaxon regenerationaxonal degenerationbasecompliance behaviordesignexperienceimprovedin vivomeetingsminimally invasivenerve injuryneurofilamentneuroprotectionnovelnovel strategiesoptic nerve disorderoptic nerve regenerationphysical propertypublic health relevancereconstructionresearch and developmentscaffoldsuccesstreatment strategyvalyllysine
项目摘要
DESCRIPTION (provided by applicant): With an estimated 2.2 million Americans with glaucoma and glaucoma-related optic neuropathies accounting for 9 to 12% of all cases of blindness in the U.S., and the acknowledgement that 10% of patients that receive proper medical treatment continue to experience vision loss, there is a clear need for an alternative treatment strategy. The current treatment paradigm is focused on pharmacological approaches to lowering intraocular pressure (IOP), despite myriad evidence indicating IOP is not the only causative factor in the pathophysiology of glaucoma. Recent work has taken a more direct approach in which the retinal ganglion cell (RGC) death causing damage to the optic nerve is targeted as a means to preserve vision or reverse vision loss. While some approaches are purely pharmacological, experience in the wider field of neural regeneration has taught us that a scaffold-based approach may be the most promising strategy. We have recently developed a polymeric injectable biomaterial that serves itself well to this application owing to its reverse thermal gelling properties. These properties allow it too rapidly and reversibly transition between
a liquid at room temperature and a solid at body temperature, permitting injection through a small gauge needle or cannula directly at the target site and then formation of a cohesive solid polymer network upon reaching body temperature. This approach has many advantages over other scaffold-based approaches including minimally-invasive deployment, in situ conformation to the injury site and tunable physical properties to mimic the host environment. In addition, this
system can be readily functionalized with function-mimicking biomolecules to enhance RGC axon regeneration. By functionally tethering these biomolecules directly to our novel injectable biomaterial, we improve both the targeting and the time-scale of their influence at the injury site Towards developing a system that can maximize these advantages, we have constructed this application around two specific aims: 1) design and characterize an appropriate functionalized, biomimetic injectable biomaterial with favorable reverse thermal gelling behavior and physiochemical properties suited to mimic the host environment for optic nerve regeneration; and 2) demonstrate that the functionalized version of this reverse thermal gel (RTG) substantially enhances RGC axon regeneration in vitro and in in vivo optic nerve crush models. We hypothesize that well-controlled incorporation of biomolecules into a temperature responsive polymeric material will lead to a novel and biomimetic injectable biomaterial that conforms in situ
to the injury site and mimics the host environment to maximize RGC axon regeneration.
描述(由申请人提供):估计有220万美国人患有青光眼和青光眼相关的视神经病,占美国所有失明病例的9%至12%,并且确认接受适当医疗的10%的患者继续经历视力丧失,因此需要另一种治疗策略。当前的治疗范式集中在降低眼内压(IOP)的药理学方法上,尽管无数证据表明IOP并不是青光眼病理生理学中唯一的病因。最近的工作采用了一种更直接的方法,其中视网膜神经节细胞(RGC)死亡导致视神经损害是一种保护视力或反向视力丧失的手段。尽管某些方法纯粹是药理,但在更广泛的神经再生领域的经验告诉我们,基于脚手架的方法可能是最有前途的策略。我们最近开发了一种可注入的聚合物生物材料,由于其反向热胶凝特性,该应用非常适合该应用。这些属性允许它在
在室温下进行液体,并在体温下使用固体,可以直接在目标部位通过小规格针或套管注射,然后在达到体温后形成粘性的固体聚合物网络。这种方法比其他基于脚手架的方法具有许多优势,包括最小侵入性的部署,对伤害部位的原位构成和可调的物理特性,以模仿宿主环境。此外,这
可以通过模仿功能的生物分子来容易地将系统功能化,以增强RGC轴突再生。 By functionally tethering these biomolecules directly to our novel injectable biomaterial, we improve both the targeting and the time-scale of their influence at the injury site Towards developing a system that can maximize these advantages, we have constructed this application around two specific aims: 1) design and characterize an appropriate functionalized, biomimetic injectable biomaterial with favorable reverse thermal gelling behavior and physiochemical properties suited to mimic the视神经再生的宿主环境; 2)证明该反向热凝胶(RTG)的功能化版本显着增强了体外和体内视神经挤压模型的RGC轴突再生。我们假设将生物分子置良好地掺入温度响应的聚合物材料将导致一种新颖而仿生的注射式生物材料,该材料与原位相吻合
到损伤部位并模仿宿主环境,以最大化RGC轴突再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malik Y. Kahook其他文献
058: Glaucoma drainage device implantation in pediatric patients using fibrin-glue
- DOI:
10.1016/j.jaapos.2008.12.029 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
P. David Freeman;Malik Y. Kahook;Theodore H. Curtis - 通讯作者:
Theodore H. Curtis
Trypan blue–assisted neodymium:YAG laser treatment for overfiltering bleb
- DOI:
10.1016/j.jcrs.2006.03.019 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:
- 作者:
Malik Y. Kahook;Joel S. Schuman;Robert J. Noecker - 通讯作者:
Robert J. Noecker
Malik Y. Kahook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malik Y. Kahook', 18)}}的其他基金
A biomimetic reverse thermal gel for optic nerve regeneration
用于视神经再生的仿生反向热凝胶
- 批准号:
8916747 - 财政年份:2014
- 资助金额:
$ 21.72万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:
10660808 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
Determining medications associated with drug-induced pancreatic injury through novel pharmacoepidemiology techniques that assess causation
通过评估因果关系的新型药物流行病学技术确定与药物引起的胰腺损伤相关的药物
- 批准号:
10638247 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别: