Motion-robust super-resolution diffusion weighted MRI of early brain development

早期大脑发育的运动稳健超分辨率扩散加权 MRI

基本信息

  • 批准号:
    8764291
  • 负责人:
  • 金额:
    $ 38.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Motion-robust super-resolution diffusion weighted MRI of early brain development The overall objective of this research is to dramatically improve technology and knowledge for in-vivo analysis of normal and abnormal white matter structure and neural connectivity before and early after birth when the brain undergoes its most rapid formative growth. Diffusion-weighted magnetic resonance imaging (DW-MRI or DWI) is considered one of the most promising tools for in-vivo analysis of neural structure; however, our ability to image the fetal and neonatal brain with this technique is constrained by several limitations; including subject motion, limited spatial resolution, and geometric distortion. There s a critical need for motion-robust high- resolution DWI imaging of fetuses and neonates. Due to the lack of such imaging technology, our understanding of early brain growth and the most commonly seen neurodevelopmental abnormalities is largely limited to insights from postmortem (in-vitro) studies. This project aims to fill these gaps through the development of an innovative, motion-robust, super-resolution, C. This involves the development and evaluation of a novel approach, built upon the physics of MRI and advanced image processing techniques, which corrects motion and reconstructs high-resolution DWI data to delineate the neural microstructure of the small fetal and neonatal brain. The two specific aims of this project target 1) moving subjects (aiming at improving neonatal DWI), and 2) fetuses, respectively; and aim at achieving high- resolution fractional anisotropy maps as well as single tensor and multi-tensor models of the neural fiber bundles in the developing brain despite subject movements. This contribution is important because it 1) enables in-vivo high-resolution mapping of the neural connectivity in fetal brain despite intermittent fetal and maternal motion, 2) significantly simpliies research MRI of neonates and preterm infants through a motion- robust imaging protocol that compensates for small head movements, 3) reduces the need for sedation and anesthesia in clinical MRI of neonates and non-cooperative patients, and 4) simultaneously corrects for motion and increases the spatial resolution of DWI, thus leads to dramatic improvements in the analysis of neural structure and connectivity in early brain development. Because the brain is incapable of self-repair and regeneration, interventions at early stages of brain growth are crucial. The development of neural rescue interventions, such as brain hypothermia, an intervention that has been shown to reduce brain damage due to birth asphyxia, is highly dependent upon accurate in-vivo analysis. Likewise, the evaluation of disruption or delay in neural development (due to premature birth or congenital anomalies) relies heavily on precise in-vivo analysis. The in-vivo analysis of early brain development proposed under this application is crucial to executing these research objectives.
描述(由申请人提供):早期大脑发育的运动稳健超分辨率弥散加权MRI本研究的总体目标是显著提高出生前和出生后早期大脑经历其最快速形成性生长时正常和异常白色物质结构和神经连接的体内分析的技术和知识。扩散加权磁共振成像(DW-MRI或DWI)被认为是神经结构体内分析最有前途的工具之一;然而,我们使用该技术对胎儿和新生儿大脑进行成像的能力受到几个限制的限制;包括受试者运动、有限的空间分辨率和几何失真。对胎儿和新生儿的运动鲁棒性高分辨率DWI成像有着迫切的需求。由于缺乏这种成像技术,我们对早期大脑生长和最常见的神经发育异常的理解在很大程度上限于死后(体外)研究的见解。该项目旨在通过开发一种创新的、运动稳健的、超分辨率的C来填补这些空白。这涉及一种新方法的开发和评估,该方法建立在MRI物理学和先进的图像处理技术基础上,可校正运动并重建高分辨率DWI数据,以描绘小胎儿和新生儿大脑的神经微结构。该项目的两个具体目标分别针对1)移动受试者(旨在改善新生儿DWI)和2)胎儿;并旨在实现高分辨率分数各向异性图以及神经纤维束的单张量和多张量模型尽管受试者移动,大脑仍在发育中。这一贡献是重要的,因为它1)尽管胎儿和母体运动间歇,仍能够实现胎儿脑中神经连接的体内高分辨率映射,2)通过补偿小的头部运动的运动稳健成像协议,显著地简化了新生儿和早产儿的研究MRI,3)减少了新生儿和不合作患者的临床MRI中对镇静和麻醉的需要,(4)同时校正运动和提高DWI的空间分辨率,从而导致在早期脑发育中的神经结构和连接的分析的显著改善。由于大脑无法自我修复和再生,因此在大脑发育的早期阶段进行干预至关重要。神经拯救干预措施的发展,如脑低温,已被证明可以减少由于出生窒息造成的脑损伤,高度依赖于准确的体内分析。同样,对神经发育中断或延迟(由于早产或先天性异常)的评估在很大程度上依赖于精确的体内分析。根据本申请提出的早期大脑发育的体内分析对于执行这些研究目标至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALI GHOLIPOUR-BABOLI其他文献

ALI GHOLIPOUR-BABOLI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金

Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10503458
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10684840
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10580011
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10345136
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10578814
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10428634
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Next-generation in-vivo fetal neuroimaging
下一代体内胎儿神经影像
  • 批准号:
    10280126
  • 财政年份:
    2021
  • 资助金额:
    $ 38.86万
  • 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10552663
  • 财政年份:
    2019
  • 资助金额:
    $ 38.86万
  • 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
  • 批准号:
    10332741
  • 财政年份:
    2019
  • 资助金额:
    $ 38.86万
  • 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
  • 批准号:
    9284277
  • 财政年份:
    2014
  • 资助金额:
    $ 38.86万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了