Augmenting carbon nanoparticles as novel antioxidants for ischemic stroke
增强碳纳米颗粒作为治疗缺血性中风的新型抗氧化剂
基本信息
- 批准号:8701712
- 负责人:
- 金额:$ 24.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdamantaneAddressAftercareAlbuminsAntibodiesAntioxidantsAscorbic AcidBlood - brain barrier anatomyBrainCarbonCarbon nanoparticleCell Culture TechniquesCerebral IschemiaCerebrovascular CirculationChemicalsClinicalClinical TrialsClinical assessmentsCoagulation ProcessComorbidityDefense MechanismsDependenceDoseDrug FormulationsDrug Metabolic DetoxicationEffectivenessEnvironmentEnzymesEquilibriumEventExcisionFailureFree RadicalsGlutathioneHumanHydrogen PeroxideHydroxyl RadicalHyperglycemiaIn VitroInfarctionInjuryIschemiaIschemic StrokeLaboratoriesLeadLifeMedicalMiddle Cerebral Artery OcclusionModelingModificationNatural regenerationNervous System PhysiologyNervous System TraumaNitric OxideOutcomeOxidative StressOxygenPathologic ProcessesPatientsPeptide antibodiesPermeabilityPhysiologicalProteinsRattusReactive Oxygen SpeciesRelative (related person)Reperfusion TherapyResearchSelectinsSeriesStrokeSuperoxide DismutaseSuperoxidesTemperatureTestingTherapeuticTimeToxic effectTraumatic Brain InjuryVariantantioxidant therapybaseclinically relevantcopingdesigndiabetic rateffective therapyfree radical oxygenfunctional outcomesimprovedin vivoinnovationlipophilicitymortalitynanomaterialsnanoparticlenovelnovel strategiesnovel therapeuticsparticlepre-clinicalpreclinical studypublic health relevancesmall moleculestoichiometry
项目摘要
DESCRIPTION (provided by applicant): Oxidative stress accompanies both normal and pathological processes. Because we live in an oxygen rich environment, we need protective mechanisms to deal with inevitable release of highly reactive oxygen free radicals resulting from both normal and pathological events such as stroke. Our primary defense against oxidative radicals consists of a series of enzymes and proteins. However, the products of these detoxification steps can yield another radical, e.g. hydroxyl, or an unstable molecule, hydrogen peroxide requiring another step of detoxification. Normally, there are sufficient levels of protective enzymes to cope with these products. However, under pathological circumstances, these intermediate steps are overwhelmed; radicals and their deleterious products accumulate. Antioxidant therapies that modify only one radical in this cascade may generate unstable intermediates that, in the face of inadequate downstream protective mechanisms, can lead to the accumulation of more radicals. It is not therefore surprising that clinical trials of conventinal antioxidant therapies have generally failed. Our laboratories have developed a new, innovative class of antioxidant using highly modified carbon nanoparticles termed PEGylated hydrophilic carbon clusters (PEG-HCCs). These particles have a high radical quenching capacity and generate oxygen during superoxide quenching, potentially ideal to treat ischemia/reperfusion. Furthermore, PEG-HCCs can be targeted using antibodies, peptides and small molecules. Importantly, they were effective after oxidative stress in cell culture while conventional antioxidants required pre-treatment. Based on our finding that PEG-HCCs rapidly restored cerebral blood flow in a model of traumatic brain injury, we hypothesize that we can develop an effective formulation in stroke. Preliminary results in a severe test in hyperglycemic transient middle cerebral artery occlusion (tMCAO) in the rat suggested improved survival. In Aim 1, we will test the ability to extend the therapeutic window using PEG-HCCs in a model of normo- and hyper-glycemic tMCAO. In Aim 2, we will test modifications intended to augment their targeting and distribution to the brain. We selected hyperglycemic stroke since it is a common co-morbidity in stroke causing increased mortality and poorer outcomes, particularly afer recanalization therapies such as clot removal. While oxidative stress is important in normoglycemic stroke, the mechanisms are quantitatively much greater in extended periods of ischemia and in hyperglycemia. Should these be successful, we will pursue the additional pre-clinical studies necessary for an IND application for human testing in stroke as a potential treatment for those who otherwise would have the worst outcomes.
描述(由申请人提供):氧化应激伴随正常和病理过程。 因为我们生活在富氧环境中,所以我们需要保护机制来处理由正常和病理事件(如中风)引起的高活性氧自由基的不可避免的释放。 我们对氧化自由基的主要防御由一系列酶和蛋白质组成。 然而,这些解毒步骤的产物可以产生另一种自由基,例如羟基,或不稳定的分子,过氧化氢,需要另一个解毒步骤。 通常情况下,有足够的保护酶来科普这些产品。 然而,在病理情况下,这些中间步骤被淹没;自由基及其有害产物积累。 抗氧化剂治疗,修改只有一个自由基在这个级联可能会产生不稳定的中间体,在面对不足的下游保护机制,可能会导致更多的自由基的积累。 因此,常规抗氧化剂治疗的临床试验普遍失败也就不足为奇了。 我们的实验室已经开发出一种新型的创新抗氧化剂,使用高度改性的碳纳米颗粒,称为聚乙二醇化亲水碳簇(PEG-HCCs)。 这些颗粒具有高的自由基猝灭能力,并在超氧化物猝灭过程中产生氧气,可能是治疗缺血/再灌注的理想选择。 此外,可以使用抗体、肽和小分子靶向PEG-HCC。 重要的是,它们在细胞培养中的氧化应激后有效,而传统的抗氧化剂需要预处理。 基于我们发现PEG-HCC在创伤性脑损伤模型中快速恢复脑血流,我们假设我们可以开发一种有效的中风制剂。 在高血糖短暂性大脑中动脉闭塞(tMCAO)大鼠中进行的严格试验的初步结果表明,存活率有所改善。 在目标1中,我们将测试在正常和高血糖tMCAO模型中使用PEG-HCC延长治疗窗的能力。 在目标2中,我们将测试旨在增强其对大脑的靶向和分布的修改。 我们选择高血糖卒中,因为它是卒中中常见的合并症,导致死亡率增加和结局较差,特别是在再通治疗(如凝块清除)后。 虽然氧化应激在血糖正常的中风中很重要,但在长时间的缺血和高血糖中,氧化应激的机制在数量上要大得多。 如果这些研究成功,我们将继续进行IND申请所需的额外临床前研究,用于中风的人体试验,作为对那些可能会有最坏结果的人的潜在治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Kent其他文献
Thomas Kent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Kent', 18)}}的其他基金
Novel carbon nanoparticle superoxide dismutation pathways
新型碳纳米颗粒超氧化物歧化途径
- 批准号:
9134869 - 财政年份:2015
- 资助金额:
$ 24.33万 - 项目类别:
相似海外基金
New Materials based on Adamantane
基于金刚烷的新材料
- 批准号:
550629-2020 - 财政年份:2020
- 资助金额:
$ 24.33万 - 项目类别:
University Undergraduate Student Research Awards
Modular approach to 1,2-disubstituted adamantane derivatives by directed C-H functionalization reactions
通过定向 C-H 官能化反应制备 1,2-二取代金刚烷衍生物的模块化方法
- 批准号:
315058126 - 财政年份:2016
- 资助金额:
$ 24.33万 - 项目类别:
Research Grants
Development of functional monolayers by successive coupling reaction originating from adamantane tripod on the metal surface
通过金属表面金刚烷三脚连续偶联反应开发功能单层
- 批准号:
24550155 - 财政年份:2012
- 资助金额:
$ 24.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adamantane Drug Binding to Membrane-Bound Influenza A M2 Protein
金刚烷药物与膜结合甲型流感 M2 蛋白的结合
- 批准号:
8097038 - 财政年份:2011
- 资助金额:
$ 24.33万 - 项目类别:
On-chip supercontinuum generation and advanced spectroscopy on adamantane-type cluster molecules
金刚烷型簇分子的片上超连续谱生成和先进光谱
- 批准号:
511825862 - 财政年份:
- 资助金额:
$ 24.33万 - 项目类别:
Research Units














{{item.name}}会员




