Advancing energy-resolved CT systems for imaging K-edge contrast agents

推进用于 K 边缘造影剂成像的能量分辨 CT 系统

基本信息

  • 批准号:
    8598086
  • 负责人:
  • 金额:
    $ 16.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-12-15 至 2015-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our goal is to provide accurate, object-independent estimates of contrast-agent concentration using energy- resolved CT. Energy-resolved CT has the potential to reduce the contrast dose and radiation dose of CT angiography exams. Combining energy-resolved CT with targeted K-edge contrast agents facilitates quantitative molecular CT, with the potential for improved spatial resolution (sub-mm), temporal resolution (sub-second) and quantitative accuracy (~5%) compared to nuclear medicine methods. Unlike conventional dual-kVp methods, energy-resolved CT distinguishes contrast materials by their distinct K-edge, enabling direct quantification. However, the accuracy and scan time of energy-resolved CT is currently limited by technological issues. This project develops innovative reconstruction and correction methods to overcome the limitations of energy-resolved CT, while increasing accuracy and reducing dose. This effort will enable faster translation of this beneficia technology into the clinic. We hypothesize that the proposed methods will quantify contrast-agent concentration to within 5% error with a one-second scan time. Specifically, the project will: (1) develop a practical spectral-response correction method, (2) develop region-of-interest material decomposition algorithms to reduce dose and pulse-pileup effects, and (3) develop a method for simultaneous estimation of contrast agent and scatter. The methods will be tested through phantom and animal experiments on our prototype energy-resolved CT system. Successful completion of the project will reduce radiation and contrast dose of CT angiography and provide important information about physiological function and disease states when combined with targeted tracers.
描述(由申请人提供):我们的目标是使用能量分辨CT提供准确的、与对象无关的造影剂浓度估计值。能量分辨CT具有降低CT血管造影检查的造影剂剂量和辐射剂量的潜力。与核医学方法相比,将能量分辨CT与靶向K边缘造影剂相结合有助于定量分子CT,具有提高空间分辨率(亚毫米)、时间分辨率(亚秒)和定量准确性(约5%)的潜力。与传统的双kVp方法不同,能量分辨CT通过其独特的K边缘区分造影剂,从而实现直接量化。然而,能量分辨CT的准确性和扫描时间目前受到技术问题的限制。该项目开发了创新的重建和校正方法,以克服能量分辨CT的局限性,同时提高准确性并降低剂量。这一努力将使这项有益的技术更快地转化为临床。我们假设,所提出的方法将量化造影剂浓度在5%的误差与一秒的扫描时间。具体而言,该项目将: (1)开发一种实用的光谱响应校正方法,(2)开发感兴趣区域材料分解算法,以减少剂量和脉冲堆积效应,以及(3)开发一种同时估计造影剂和散射的方法。这些方法将通过在我们的原型能量分辨CT系统上的幻影和动物实验进行测试。该项目的成功完成将减少CT血管造影的辐射和对比剂量,并在与靶向示踪剂结合时提供有关生理功能和疾病状态的重要信息。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taly Gilat Schmidt其他文献

Fractal dimension metric for quantifying noise texture of computed tomography images
用于量化计算机断层扫描图像的噪声纹理的分形维数度量
  • DOI:
    10.1117/12.2255077
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Khobragade;Jiahua Fan;Franco Rupcich;D. Crotty;Taly Gilat Schmidt
  • 通讯作者:
    Taly Gilat Schmidt
Material decomposition for photon-counting CT using a flux-independent neural network
使用通量无关神经网络进行光子计数 CT 的材料分解
  • DOI:
    10.1117/12.2655714
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    James D. Castiglioni;E. Sidky;Taly Gilat Schmidt
  • 通讯作者:
    Taly Gilat Schmidt
Experimental dual-kV reconstructions of objects containing metal using the cOSSCIR algorithm
使用 cOSSCIR 算法对含有金属的物体进行实验性双 kV 重建
  • DOI:
    10.1117/12.2655724
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    B. Rizzo;E. Sidky;Taly Gilat Schmidt
  • 通讯作者:
    Taly Gilat Schmidt
The effects of gantry tilt on breast dose and image noise in cardiac CT.
机架倾斜对心脏 CT 中乳腺剂量和图像噪声的影响。
  • DOI:
    10.1118/1.4829521
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Michael E Hoppe;Diksha Gandhi;Grant M Stevens;W. D. Foley;Taly Gilat Schmidt
  • 通讯作者:
    Taly Gilat Schmidt
Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm
使用基于优化的重建算法减少能谱 CT 金属伪影
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taly Gilat Schmidt;R. Barber;E. Sidky
  • 通讯作者:
    E. Sidky

Taly Gilat Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taly Gilat Schmidt', 18)}}的其他基金

Spectral CT metal artifact correction
能谱CT金属伪影校正
  • 批准号:
    9924529
  • 财政年份:
    2019
  • 资助金额:
    $ 16.6万
  • 项目类别:
Spectral CT metal artifact correction
能谱CT金属伪影校正
  • 批准号:
    10372913
  • 财政年份:
    2019
  • 资助金额:
    $ 16.6万
  • 项目类别:
Software tool for routine, rapid, patient-specific CT organ dose estimation
用于常规、快速、患者特定 CT 器官剂量估算的软件工具
  • 批准号:
    9922675
  • 财政年份:
    2017
  • 资助金额:
    $ 16.6万
  • 项目类别:
Advancing energy-resolved CT systems for imaging K-edge contrast agents
推进用于 K 边缘造影剂成像的能量分辨 CT 系统
  • 批准号:
    8445996
  • 财政年份:
    2012
  • 资助金额:
    $ 16.6万
  • 项目类别:
Innovative reconstruction algorithms for undersampled SPECT
欠采样 SPECT 的创新重建算法
  • 批准号:
    7981380
  • 财政年份:
    2010
  • 资助金额:
    $ 16.6万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了