Spectral CT metal artifact correction
能谱CT金属伪影校正
基本信息
- 批准号:10372913
- 负责人:
- 金额:$ 27.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyCalibrationClinicalDataData SetDentalDevelopmentDiagnosticDiagnostic ImagingDoseGoldHip ProsthesisImageImage AnalysisImplantKnowledgeMalignant neoplasm of prostateMapsMeasurementMetalsMethodsMorphologic artifactsNoiseNormal tissue morphologyOrganOrthopedic ProceduresOrthopedicsOverdosePathologyPelvisPerformancePhotonsPrevalenceProstate Cancer therapyRadiation Dose UnitRadiation therapyRiskRoentgen RaysSourceStarvationSystemTechniquesTechnologyTissuesUncertaintyVariantWorkX-Ray Computed Tomographybasedata modelingdesignexperimental studyimage reconstructionimaging modalityimplant materialimprovedin vivoirradiationnovelphoton-counting detectorphysical modelpreservationprototypepublic health relevancereconstructionresearch clinical testingsimulationsoft tissuetreatment planningtumor
项目摘要
PROJECT SUMMARY
Radiation therapy treatment planning can be severely impacted by the presence of metal objects such as
implants and orthopaedic hardware. Metal objects cause artifacts in computed tomography (CT) images that
obscure anatomical structures and alter the CT numbers, both of which are critical to estimate accurately for the
purpose of planning radiation therapy. These uncertainties can cause underdosing of tumors and overdosing of
healthy tissue. Existing metal artifact reduction techniques do not fully mitigate all artifacts created by the metal
objects and are known to introduce new artifacts. This project will develop a spectral CT imaging method to
reduce metal artifacts while maintaining CT number accuracy and soft tissue contrast. We propose to reduce
metal artifacts in CT imaging by using state-of-the-art acquisition techniques, combined with an optimization-
based reconstruction framework. We developed a constrained `one-step' spectral CT image reconstruction
(cOSSCIR) algorithm in previous work and preliminary studies demonstrate feasibility of the proposed algorithm
to reduce metal artifacts to <8 HU error. The incorporation of physical effects into the data model is one method
by which the algorithm reduces metal artifacts. The optimization framework developed by our group uniquely
incorporates constraints that mitigate undersampling due to unreliable measurements that pass through metal
and also enable acquisition approaches that will reduce the number of unreliable measurements. The methods
are designed to correct metal artifacts broadly and automatically without requiring knowledge of the implant
material. The project objective to reduce metal artifacts while maintaining soft tissue contrast and CT number
accuracy will be achieved by further developing the cOSSCIR algorithm and investigating its application to both
dual-kV and photon-counting spectral acquisition methods using simulations, phantom experiments, and clinical
photon-counting CT datasets. The algorithm will also be evaluated relative to task of radiation therapy planning
for prostate cancer in the presence of hip prostheses using simulations and phantom experiments. The
developed spectral CT metal artifact correction method will be compared to gold-standard images and an
established metal artifact reduction technique. Successful completion of the project aims will result in a method
to reduce metal artifacts in CT images while maintaining soft tissue contrast and CT number accuracy that has
been validated on simulated and experimental phantom data.
项目概要
放射治疗的治疗计划可能会因金属物体的存在而受到严重影响,例如
植入物和矫形硬件。金属物体会导致计算机断层扫描 (CT) 图像出现伪影
模糊解剖结构并改变 CT 数字,这两者对于准确估计
计划放射治疗的目的。这些不确定性可能导致肿瘤剂量不足和肿瘤剂量过量
健康的组织。现有的金属伪影减少技术并不能完全减轻金属产生的所有伪影
对象并已知会引入新的工件。该项目将开发一种能谱 CT 成像方法
减少金属伪影,同时保持 CT 数字准确性和软组织对比度。我们建议减少
通过使用最先进的采集技术并结合优化,消除 CT 成像中的金属伪影
为基础的重建框架。我们开发了一种受限的“一步式”能谱 CT 图像重建
(cOSSCIR)算法在之前的工作和初步研究中证明了所提出算法的可行性
将金属伪影减少到 <8 HU 误差。将物理效应纳入数据模型是一种方法
该算法通过该算法减少了金属伪影。我组独有研发的优化框架
包含了一些约束,可以减轻由于穿过金属的不可靠测量而导致的采样不足
还可以采用采集方法来减少不可靠测量的数量。方法
旨在广泛且自动地纠正金属伪影,无需了解植入物
材料。该项目的目标是减少金属伪影,同时保持软组织对比度和 CT 数量
通过进一步开发 coSSCIR 算法并研究其在两者中的应用,可以实现准确性
使用模拟、模型实验和临床的双 kV 和光子计数光谱采集方法
光子计数 CT 数据集。该算法还将根据放射治疗计划的任务进行评估
使用模拟和模型实验在髋关节假体存在的情况下治疗前列腺癌。这
开发的光谱 CT 金属伪影校正方法将与金标准图像和
建立了金属伪影减少技术。成功完成项目目标将产生一种方法
减少 CT 图像中的金属伪影,同时保持软组织对比度和 CT 数字精度
已在模拟和实验模型数据上得到验证。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental study of photon-counting CT neural network material decomposition under conditions of pulse pileup.
- DOI:10.1117/1.jmi.8.1.013502
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Jenkins PJB;Schmidt TG
- 通讯作者:Schmidt TG
Constrained one-step material decomposition reconstruction of head CT data from a silicon photon-counting prototype.
来自硅光子计数原型的头部 CT 数据的约束一步材料分解重建。
- DOI:10.1002/mp.16649
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Schmidt,TalyGilat;Sidky,EmilY;Pan,Xiaochuan;Barber,RinaFoygel;Grönberg,Fredrik;Sjölin,Martin;Danielsson,Mats
- 通讯作者:Danielsson,Mats
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taly Gilat Schmidt其他文献
Fractal dimension metric for quantifying noise texture of computed tomography images
用于量化计算机断层扫描图像的噪声纹理的分形维数度量
- DOI:
10.1117/12.2255077 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
P. Khobragade;Jiahua Fan;Franco Rupcich;D. Crotty;Taly Gilat Schmidt - 通讯作者:
Taly Gilat Schmidt
Material decomposition for photon-counting CT using a flux-independent neural network
使用通量无关神经网络进行光子计数 CT 的材料分解
- DOI:
10.1117/12.2655714 - 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
James D. Castiglioni;E. Sidky;Taly Gilat Schmidt - 通讯作者:
Taly Gilat Schmidt
Experimental dual-kV reconstructions of objects containing metal using the cOSSCIR algorithm
使用 cOSSCIR 算法对含有金属的物体进行实验性双 kV 重建
- DOI:
10.1117/12.2655724 - 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
B. Rizzo;E. Sidky;Taly Gilat Schmidt - 通讯作者:
Taly Gilat Schmidt
The effects of gantry tilt on breast dose and image noise in cardiac CT.
机架倾斜对心脏 CT 中乳腺剂量和图像噪声的影响。
- DOI:
10.1118/1.4829521 - 发表时间:
2013 - 期刊:
- 影响因子:3.8
- 作者:
Michael E Hoppe;Diksha Gandhi;Grant M Stevens;W. D. Foley;Taly Gilat Schmidt - 通讯作者:
Taly Gilat Schmidt
Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm
使用基于优化的重建算法减少能谱 CT 金属伪影
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Taly Gilat Schmidt;R. Barber;E. Sidky - 通讯作者:
E. Sidky
Taly Gilat Schmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taly Gilat Schmidt', 18)}}的其他基金
Software tool for routine, rapid, patient-specific CT organ dose estimation
用于常规、快速、患者特定 CT 器官剂量估算的软件工具
- 批准号:
9922675 - 财政年份:2017
- 资助金额:
$ 27.75万 - 项目类别:
Advancing energy-resolved CT systems for imaging K-edge contrast agents
推进用于 K 边缘造影剂成像的能量分辨 CT 系统
- 批准号:
8598086 - 财政年份:2012
- 资助金额:
$ 27.75万 - 项目类别:
Advancing energy-resolved CT systems for imaging K-edge contrast agents
推进用于 K 边缘造影剂成像的能量分辨 CT 系统
- 批准号:
8445996 - 财政年份:2012
- 资助金额:
$ 27.75万 - 项目类别:
Innovative reconstruction algorithms for undersampled SPECT
欠采样 SPECT 的创新重建算法
- 批准号:
7981380 - 财政年份:2010
- 资助金额:
$ 27.75万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 27.75万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Studentship














{{item.name}}会员




