Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
基本信息
- 批准号:8562082
- 负责人:
- 金额:$ 70.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersAnimalsAreaBackBiologicalBone MarrowCellsClinicalColorEngraftmentFiberFrequenciesGenerationsGoalsHealthHematopoietic NeoplasmsHematopoietic Stem Cell TransplantationHematopoietic stem cellsHomingImageImaging technologyIndividualIndustryLabelLasersLeadLifeLightLymphomaMethodsMicroscopeMicroscopyMonitorMusOpticsOsteoblastsPatientsPhysiologic pulseProceduresPulse RatesRecoveryResearchResearch PersonnelSapphireSemaphorinsSourceSpeedStem Cell ResearchStem cell transplantStem cellsSystemTechniquesTechnologyTelecommunicationsTestingTissuesTransplantationbasebioimagingcell typecohortcostdesignfluorophoreimaging modalityimprovedin vivoinnovationinsightintravital imagingleukemialipid biosynthesismeetingsnovelprogramsregenerativeresearch studysecond harmonic
项目摘要
DESCRIPTION (provided by applicant): This is a collaborative research program that brings together an optical technology group (Dr. Xu) and an in vivo imaging group (Dr. Lin). The two groups share a common goal to develop imaging technology for solving biomedical problems and addressing clinical needs. Here we focus on the need to improve hematopoietic stem cell (HSC) homing and engraftment after HSC transplantation (HSCT). This life-saving procedure is often the last hope of cure for patients with cancers of the blood system such as leukemia or lymphoma, but successful transplantation can be achieved only if a sufficient number of transplanted HSCs are able to reach and engraft the patient's bone marrow (BM). To help improve stem cell homing and engraftment, the Lin group has developed intravital imaging methods to track individual HSCs in the BM of live animals after transplantation. However, the current view of the BM microenvironment is severely limited due to the inadequacies of the available imaging technology. To gain a more comprehensive view of the BM microenvironment, where multiple cell types interact and form a supportive niche for HSC engraftment, the Xu group will develop a novel fiber-based source for nonlinear microscopy, which will enable simultaneous imaging of multiple fluorescent indicators as well as enabling label-free harmonic generation and vibrational imaging. Integration of the new source with the intravital microscope will enable the Lin group to proceed with experiments that had been envisioned but were held back due to lack of a suitable technology. The proposed source is based on the following innovations: (1) Soliton self-frequency shift (SSFS) in a large mode area (LMA) fiber enables the generation of energetic, widely wavelength tunable soliton pulses seeded from a fiber laser at the telecom wavelength, and the subsequent second harmonic generation (SHG) of the fundamental wavelength enables a single turn-key, low-cost, fiber-based source to generate three independent wavelength tunable sources to excite multiple fluorophores. 2) All-fiber, high-speed intensity modulation to electronically control the wavelength, repetition rate, and pulse delay. 3) A single light source will enable experiments that currently require two synchronized Ti:sapphire lasers plus an optical parametric oscillator (OPO) and a regenerative amplifier. Leveraging the highly mature and integrated techniques that have been developed for the telecommunications industry, we aim to create a "telecom grade" femtosecond source that is truly robust and versatile. The versatility is important for tailoring the source to meet specific imaging needs while the robustness is essential for the biological studies that require longitudinal imaging of large cohorts of animals. The successful completion of this program will not only advance imaging technology but also advance stem cell research. In addition, the technology will be broadly applicable and will significantly increase the accessibility of femtosecond sources to other biomedical researchers.
描述(由申请人提供):这是一个合作研究项目,汇集了光学技术组(徐博士)和体内成像组(林博士)。这两个小组有一个共同的目标,即开发成像技术来解决生物医学问题和满足临床需求。在这里,我们重点关注造血干细胞移植(HSCT)后改善造血干细胞(HSC)归巢和植入的需要。这种挽救生命的手术通常是治愈血液系统癌症(如白血病或淋巴瘤)患者的最后希望,但只有当足够数量的移植造血干细胞能够到达并植入患者的骨髓(BM)时,才能实现成功的移植。为了帮助改善干细胞的归巢和植入,Lin小组开发了活体成像方法来追踪移植后活体动物骨髓中的单个hsc。然而,由于现有成像技术的不足,目前对BM微环境的看法受到严重限制。为了更全面地了解骨髓微环境,其中多种细胞类型相互作用并形成支持HSC植入的生态位,Xu团队将开发一种新型的基于纤维的非线性显微镜源,它将能够同时成像多种荧光指标,并实现无标签谐波产生和振动成像。新光源与活体显微镜的整合将使Lin小组能够继续进行预期的实验,但由于缺乏合适的技术而被推迟。提出的光源基于以下创新:(1)大模区(LMA)光纤中的孤子自频移(SSFS)能够在电信波长的光纤激光器中产生高能、宽波长可调的孤子脉冲,随后的基波二次谐波产生(SHG)使单个交钥匙、低成本、基于光纤的源能够产生三个独立的波长可调源,以激发多个荧光团。2)全光纤、高速强度调制,以电子方式控制波长、重复率和脉冲延迟。3)单个光源将使目前需要两个同步钛蓝宝石激光器加上光学参量振荡器(OPO)和再生放大器的实验成为可能。利用已经为电信行业开发的高度成熟和集成的技术,我们的目标是创建一个真正健壮和通用的“电信级”飞秒源。多功能性对于定制源以满足特定成像需求非常重要,而鲁棒性对于需要对大型动物群体进行纵向成像的生物学研究至关重要。该项目的成功完成不仅将推动成像技术的发展,也将推动干细胞研究的发展。此外,该技术将广泛适用,并将大大增加飞秒源对其他生物医学研究人员的可及性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles P. Lin其他文献
Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta
使用光纤激光源进行深部组织单细胞 MSC 消融评估成骨不全症的治疗潜力
- DOI:
10.1117/12.2213292 - 发表时间:
2016 - 期刊:
- 影响因子:4.3
- 作者:
K. Tehrani;Emily G Pendleton;Charles P. Lin;L. Mortensen - 通讯作者:
L. Mortensen
Haematopoietic stem cells depend on Gαs-mediated signalling to engraft bone marrow
造血干细胞依赖于 Gαs 介导的信号传导来植入骨髓
- DOI:
10.1038/nature07859 - 发表时间:
2009-03-25 - 期刊:
- 影响因子:48.500
- 作者:
Gregor B. Adams;Ian R. Alley;Ung-il Chung;Karissa T. Chabner;Nathaniel T. Jeanson;Cristina Lo Celso;Emily S. Marsters;Min Chen;Lee S. Weinstein;Charles P. Lin;Henry M. Kronenberg;David T. Scadden - 通讯作者:
David T. Scadden
A Sensorless Adaptive Optics Scanning Laser Ophthalmoscope for Mice
用于小鼠的无传感器自适应光学扫描激光检眼镜
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
D. Biss;R. Webb;Yaopeng Zhou;T. Bifano;Charles P. Lin - 通讯作者:
Charles P. Lin
Computational modeling of stress transient and bubble evolution in short-pulse laser-irradiated melanosome particles
短脉冲激光照射黑素体颗粒中应力瞬态和气泡演化的计算模型
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Strauss;P. Amendt;R. London;D. Maitland;M. Glinsky;Charles P. Lin;Michael W. Kelly - 通讯作者:
Michael W. Kelly
Declined presentation inflammatory modulation of hematopoietic stromal niche cells by TNF-α leads to rapid mobilization of hematopoietic stem/progenitor cells (HSPC) and neutrophils
- DOI:
10.1016/j.exphem.2015.06.134 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Shin-Young Park;Eun Young Anna Han;Yookyung Jung;Charles P. Lin;Leslie E. Silberstein - 通讯作者:
Leslie E. Silberstein
Charles P. Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles P. Lin', 18)}}的其他基金
Local Skull Marrow Sensing and Response to CNS Inflammation
局部颅骨对中枢神经系统炎症的感知和反应
- 批准号:
10654045 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
8876904 - 财政年份:2015
- 资助金额:
$ 70.44万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
9262173 - 财政年份:2015
- 资助金额:
$ 70.44万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8852123 - 财政年份:2013
- 资助金额:
$ 70.44万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
9087255 - 财政年份:2013
- 资助金额:
$ 70.44万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8701293 - 财政年份:2013
- 资助金额:
$ 70.44万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 70.44万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 70.44万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 70.44万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 70.44万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 70.44万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 70.44万 - 项目类别:
Collaborative R&D