Statistical and Computational Tools for Next-generation ChIP-seq Applications

用于下一代 ChIP-seq 应用的统计和计算工具

基本信息

  • 批准号:
    8666661
  • 负责人:
  • 金额:
    $ 31.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-12 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): ChIP-seq is a powerful technology to map genome-wide protein-DNA interactions (PDIs). It is increasingly used by scientists worldwide to study how gene activities are controlled in normal cells and why they are disrupted in diseases. Applying ChIP-seq to study gene regulation faces three major challenges: (1) how to analyze large ChIP-seq data sets to discover dynamic changes of gene regulation across different biological contexts, (2) how to infer global regulatory programs under the practical constraint that it is not feasible to conduct ChIP-seq for all transcription factors (TFs), and (3) how to analyze allele-specific events given the small amount of data at heterozygote SNPs which cause low statistical power. This study investigates novel statistical and computational solutions to address the challenges above. First, a new method will be developed to discover and characterize dynamic changes of gene regulation across different biological contexts. This method, Generalized Differential Principal Component Analysis (dPCA/GDPCA), integrates unsupervised pattern discovery, dimension reduction and statistical inference into a single statistical framework. It provides a systematic solution to analyze quantitative and curve shape changes in large ChIP-seq data sets involving multiple proteins. It is expected to have a wide range of applications. Second, a computational framework will be developed to predict global gene regulation dynamics, i.e., dynamic changes of downstream regulatory events of all TFs for which DNA binding motif information is available. The analysis integrates the dynamic changes of histone modification ChIP-seq, DNase-seq, and FAIRE-seq data with DNA sequences, public ChIP-seq, and public gene expression data. It will provide a practical, affordable, and reasonably accurate solution to utilizing ChIP-seq to study many TFs simultaneously. A systematic benchmark study will also be con- ducted to evaluate the impact of technologies, data types and analytical methods on prediction performance. This benchmark study will provide guidelines for designing informative future experiments. Third, a method for detecting allele-specific protein-DNA binding (ASB) will be developed. The method is able to integrate information from multiple ChIP-seq data sets and completely phased genome sequences to significantly improve the statistical power of ASB inference. Various sources of biases will also be handled. Guidelines and new analytical tools generated by this study will allow one to design informative ChIP-seq experiments in the future such that by collecting one set of ChIP-seq data, one can not only identify locations of PDIs, but also infer global dynamic changes of TF binding sites across different biological contexts, and, if genotype data are available, robustly analyze allele-specific gene regulation. This will make ChIP-seq a low-cost high-reward experiment that serves multiple purposes. By significantly expanding the utility and increasing the power of ChIP-seq, our computational infrastructure is expected to have a major impact on advancing future studies of gene regulation and dissections of regulatory mechanisms behind human diseases.
描述(由申请人提供):ChIP-seq是一种强大的技术,用于绘制全基因组蛋白质-DNA相互作用(PDI)。世界各地的科学家越来越多地使用它来研究基因活动在正常细胞中是如何控制的,以及为什么它们在疾病中被破坏。应用ChIP-seq研究基因调控面临三大挑战:(1)如何分析大的ChIP-seq数据集以发现跨不同生物背景的基因调控的动态变化,(2)如何在对所有转录因子(TF)进行ChIP-seq不可行的实际约束下推断全局调控程序,以及(3)在杂合子SNP处的少量数据导致低统计功效的情况下,如何分析等位基因特异性事件。 本研究探讨了新的统计和计算解决方案 应对上述挑战。首先,将开发一种新的方法来发现和表征不同生物背景下基因调控的动态变化。这种方法,广义差分主成分分析(dPCA/GDPCA),集成了无监督模式发现,降维和统计推断到一个单一的统计框架。它提供了一个系统的解决方案,用于分析涉及多种蛋白质的大型ChIP-seq数据集的定量和曲线形状变化。预计它将有广泛的应用。其次,将开发一个计算框架来预测全球基因调控动态,即,所有TF下游调控事件的动态变化,其中DNA结合基序信息可用。该分析整合了组蛋白修饰ChIP-seq,DNase-seq和FAIRE-seq数据的动态变化与DNA序列,公共ChIP-seq和公共基因表达数据。它将为利用ChIP-seq同时研究多个TF提供实用、经济且相当准确的解决方案。还将进行系统的基准研究,以评估技术、数据类型和分析方法对预测性能的影响。这项基准研究将为设计信息丰富的未来实验提供指导。第三,将开发用于检测等位基因特异性蛋白质-DNA结合(ASB)的方法。该方法能够整合来自多个ChIP-seq数据集和完全定相的基因组序列的信息,以显着提高ASB推断的统计能力。还将处理各种偏见来源。 本研究产生的指南和新的分析工具将允许人们在未来设计信息丰富的ChIP-seq实验,以便通过收集一组ChIP-seq数据,不仅可以识别PDI的位置,而且可以推断不同生物背景下TF结合位点的全局动态变化,并且如果基因型数据可用,则可以稳健地分析等位基因特异性基因调控。这将使ChIP-seq成为一个低成本高回报的实验,可用于多种目的。通过显著扩展ChIP-seq的实用性和增强其功能,我们的计算基础设施有望对推进未来的基因调控研究和人类疾病背后的调控机制的剖析产生重大影响。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compressive Network Analysis.
压缩网络分析
Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells.
  • DOI:
    10.1101/gad.257071.114
  • 发表时间:
    2015-06-15
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Wamaitha SE;del Valle I;Cho LT;Wei Y;Fogarty NM;Blakeley P;Sherwood RI;Ji H;Niakan KK
  • 通讯作者:
    Niakan KK
Optimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, using Sparse Linear Programming.
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis.
高维半参数尺度不变的主成分分析。
Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions.
高维椭圆分布的校准精度矩阵估计。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongkai Ji其他文献

Hongkai Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongkai Ji', 18)}}的其他基金

Immune Development Across the Life Course: Integrating Exposures and Multi-Omics in the Boston Birth Cohort
整个生命过程中的免疫发展:在波士顿出生队列中整合暴露和多组学
  • 批准号:
    10418079
  • 财政年份:
    2022
  • 资助金额:
    $ 31.75万
  • 项目类别:
Immune Development Across the Life Course: Integrating Exposures and Multi-Omics in the Boston Birth Cohort
整个生命过程中的免疫发展:在波士顿出生队列中整合暴露和多组学
  • 批准号:
    10704536
  • 财政年份:
    2022
  • 资助金额:
    $ 31.75万
  • 项目类别:
Computational tools for regulome mapping using single-cell genomic data
使用单细胞基因组数据进行调节组图谱的计算工具
  • 批准号:
    10205134
  • 财政年份:
    2019
  • 资助金额:
    $ 31.75万
  • 项目类别:
Computational tools for regulome mapping using single-cell genomic data
使用单细胞基因组数据进行调节组图谱的计算工具
  • 批准号:
    10443743
  • 财政年份:
    2019
  • 资助金额:
    $ 31.75万
  • 项目类别:
Computational tools for regulome mapping using single-cell genomic data
使用单细胞基因组数据进行调节组图谱的计算工具
  • 批准号:
    10001077
  • 财政年份:
    2019
  • 资助金额:
    $ 31.75万
  • 项目类别:
Big Data Methods for Decoding Gene Regulation
解码基因调控的大数据方法
  • 批准号:
    10171879
  • 财政年份:
    2018
  • 资助金额:
    $ 31.75万
  • 项目类别:
Big Data Methods for Decoding Gene Regulation
解码基因调控的大数据方法
  • 批准号:
    9762143
  • 财政年份:
    2018
  • 资助金额:
    $ 31.75万
  • 项目类别:
Computational Tools for Mining Large Amounts of ChIP and Gene Expression Data
用于挖掘大量 ChIP 和基因表达数据的计算工具
  • 批准号:
    8516554
  • 财政年份:
    2012
  • 资助金额:
    $ 31.75万
  • 项目类别:
Computational Tools for Mining Large Amounts of ChIP and Gene Expression Data
用于挖掘大量 ChIP 和基因表达数据的计算工具
  • 批准号:
    8372529
  • 财政年份:
    2012
  • 资助金额:
    $ 31.75万
  • 项目类别:
Statistical and Computational Tools for Next-generation ChIP-seq Applications
用于下一代 ChIP-seq 应用的统计和计算工具
  • 批准号:
    8342445
  • 财政年份:
    2012
  • 资助金额:
    $ 31.75万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了