Structural Kinetics of Thin Filament Regulation at Single Molecule Level
单分子水平细丝调节的结构动力学
基本信息
- 批准号:8690957
- 负责人:
- 金额:$ 17.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressBindingCardiacContractsDepressed moodDimensionsDissociationEnergy TransferEquilibriumFeedbackFluorescence AnisotropyFluorescence SpectroscopyHeadHeartHeart failureHeterogeneityIn VitroIndividualKineticsKnowledgeMeasurementMicrofilamentsMicroscopicMolecularMolecular ConformationMuscle ContractionMuscle FibersMuscle relaxation phaseMyocardialMyocardiumMyosin ATPaseOutcomePathologyPlayPopulationPreparationProcessProtein DynamicsProteinsRegulationRelaxationResearchRoleSamplingSarcomeresSeriesSignal TransductionSkinSpectrum AnalysisStructural ProteinTechniquesTestingThick FilamentThin FilamentTroponinTroponin CWorkbaseimprovedinsightinterestnovelnovel strategiespublic health relevancereconstitutionresponsesingle moleculesuccess
项目摘要
DESCRIPTION (provided by applicant): Heart failure results from impaired activation or deactivation of the heart at the level of the myofilament. Current dogma suggests that cardiac muscle contracts upon Ca2+ binding to cTnC, which regulates an "on" process in the thin filament (TF) leading to crossbridge (XB) attachment to generate force. Cardiac relaxation is regulated by a reverse "off" process in the TF triggered by rapid dissociation of Ca2+ from cTnC. It is thus believed that the kinetics of these structural changes modulate the kinetics of the XB cycle, such that pathology may arise from alterations in the relationship between the structural kinetics of the TF and XB cycling kinetics. However, previous ensemble studies failed to define the kinetic linkage between the TF processes and XB cycling. A main feature associated with TF regulation is Ca2+-induced dynamic interactions among the TF proteins, including multiple reversible structural changes at the TF protein interfaces. These forward and backward structural transitions represent the discreet signaling steps of the TF switching process that regulates XB cycling. Based on the findings from our recent in vitro dynamics study, we hypothesize that the microscopic kinetics of these forward and backward transitions in conformational state dictate equilibrium relationships between conformational populations and are tunable, and may thus provide the linkage between the rapid kinetics of Ca2+ exchange with cTnC and slow kinetics of XB cycling. However, the microscopic rate constants of individual steps cannot be easily determined by our current strategies that rely on ensemble-averaged measurements which obscure the spatial and temporal inhomogeneity of the protein dynamics present in the ensemble. Single-molecule spectroscopy has the unique advantage of unraveling this spatial and temporal heterogeneity inherent in ensemble samples. Accordingly, the overall objective of this project is to explore the use of single-molecule Forster Resonance Energy Transfer (smFRET) approaches to define the kinetic linkage between Ca2+-signaling and XB cycling by further characterizing the equilibrium relationships governing transitions between TF conformational populations. Importantly, microscopic forward or backward transition rate constants for each Ca2+-induced TF structural transition will be acquired. Two Specific Aims will be pursued using smFRET techniques to test our hypothesis: (1) examine the equilibrium relationships between conformational populations of cTnC at the level of single reconstituted regulatory units and (2) at the single-molecule level, determine microscopic rate constants associated with each Ca2+-induced reversible structural transitions of the C-domain of cTnI within single reconstituted regulatory units. Outcomes of this project will be of critical importane in addressing the current issue of the regulatory role of the TF in controlling XB cycling kinetics We expect that the information obtained from our proposed single-molecule studies will help to vertically advance the knowledge gained from our ensemble studies and muscle fiber research.
描述(由申请人提供):心力衰竭由心肌丝水平的心脏激活或失活受损引起。目前的教条表明,心肌收缩后,Ca 2+结合到cTnC,调节“上”过程中的细丝(TF),导致横桥(XB)连接,以产生力。心脏舒张由TF中的反向“关闭”过程调节,TF中的反向“关闭”过程由Ca 2+与cTnC的快速解离触发。因此,据信这些结构变化的动力学调节XB循环的动力学,使得病理可能由TF的结构动力学和XB循环动力学之间的关系的改变引起。然而,之前的系综研究未能定义TF过程和XB循环之间的动力学联系。与TF调节相关的主要特征是TF蛋白之间的Ca 2+诱导的动态相互作用,包括TF蛋白界面处的多个可逆结构变化。这些前向和后向结构转变表示调节XB循环的TF切换过程的离散信令步骤。基于我们最近的体外动力学研究的结果,我们假设,这些正向和反向转变的微观动力学的构象状态决定构象种群之间的平衡关系,是可调的,并因此可能提供的快速动力学之间的联系Ca 2+交换与cTnC和XB循环的缓慢动力学。然而,个别步骤的微观速率常数不能很容易地确定我们目前的策略,依赖于合奏平均测量模糊的空间和时间的不均匀性的蛋白质动力学合奏。单分子光谱学具有独特的优势,解开这种空间和时间的异质性固有的合奏样品。因此,该项目的总体目标是探索使用单分子福斯特共振能量转移(smFRET)方法,通过进一步表征控制TF构象群体之间转变的平衡关系来定义Ca 2+信号传导和XB循环之间的动力学联系。重要的是,将获得每个Ca 2+诱导的TF结构转变的微观向前或向后转变速率常数。将采用smFRET技术实现两个特定目的以检验我们的假设:(1)在单个重构调控单元水平上检查cTnC构象群体之间的平衡关系;(2)在单分子水平上,确定与单个重构调控单元内cTnI C结构域的每个Ca 2+诱导可逆结构转变相关的微观速率常数。这个项目的结果将是至关重要的,在解决当前的问题的TF在控制XB循环动力学的调节作用。我们希望从我们提出的单分子研究中获得的信息将有助于垂直推进从我们的合奏研究和肌纤维研究中获得的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEN-JI DONG其他文献
WEN-JI DONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEN-JI DONG', 18)}}的其他基金
Paper-Based Nucleic Acid Amplification Test for Rapid Diagnosis of Hepatitis C Viral Infection
纸基核酸扩增测试快速诊断丙型肝炎病毒感染
- 批准号:
10558611 - 财政年份:2022
- 资助金额:
$ 17.8万 - 项目类别:
Paper-Based Nucleic Acid Amplification Test for Rapid Diagnosis of Hepatitis C Viral Infection
纸基核酸扩增测试快速诊断丙型肝炎病毒感染
- 批准号:
10430557 - 财政年份:2022
- 资助金额:
$ 17.8万 - 项目类别:
Two-Dimensional Multi-Stage Isotachophoretic Technology for Multiplex Analysis of Cancer Exosomes and Proteins Marker Panel
用于癌症外泌体和蛋白质标记物组多重分析的二维多级等速电泳技术
- 批准号:
10322022 - 财政年份:2021
- 资助金额:
$ 17.8万 - 项目类别:
Structural Kinetics of Thin Filament Regulation at Single Molecule Level
单分子水平细丝调控的结构动力学
- 批准号:
8445988 - 财政年份:2013
- 资助金额:
$ 17.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.8万 - 项目类别:
Research Grant














{{item.name}}会员




