Engineering and Evaluation of Human L-Methionase for Cancer Therapy
人类 L-甲硫氨酸酶用于癌症治疗的工程和评估
基本信息
- 批准号:8403663
- 负责人:
- 金额:$ 40.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAlteplaseAnabolismAnaphylaxisAnimal ModelAntibodiesApoptoticBiochemicalBlood CirculationBuffersCell LineCellsCephalicCessation of lifeChildChildhood Solid NeoplasmClinicalClinical TrialsCombination Drug TherapyCombined Modality TherapyCystathionineDevelopmentDiagnosisDietary SupplementationDiseaseDoseDrug KineticsEffectivenessEngineeringEnzyme KineticsEnzymesEvaluationExhibitsGenerationsGlioblastomaHalf-LifeHomocysteineHomocystineHumanHuman EngineeringHuman GenomeHydrolysisInhibitory Concentration 50Injection of therapeutic agentLeadLeftLiquid substanceLyaseMalignant NeoplasmsMalignant neoplasm of central nervous systemMeasuresMediatingMetabolicMethionineMethylationMicrotubule DepolymerizationMusMutagenesisNeuroblastomaNon-MalignantNormal CellNormal tissue morphologyNude MicePatientsPharmaceutical PreparationsPharmacodynamicsPhysiologicalPlasmaPolyaminesPolymersPrimatesProcessPropertyProstate carcinomaProtein BiosynthesisProtein EngineeringProteinsPseudomonasReactionRegimenRelapseRelative (related person)ReportingSerumSiteSourceSpecificityStructureSubstrate SpecificityTechniquesTherapeuticToxic effectVariantVincristineWorkXenograft ModelXenograft procedureadvanced diseasecancer therapycatalystchemotherapyclinical practiceclinically relevantcombinatorialcytotoxiccytotoxicitydesigndirected evolutionefficacy evaluationenzyme structureestablished cell linehigh throughput screeningimmunogenicimmunogenicityin vitro activityin vivokillingsmeetingsmouse modelmutantneoplasticneuroblastoma cellnovelpolypeptidepre-clinicalpublic health relevanceresponsetissue culturetumortumor growthtumor xenograft
项目摘要
DESCRIPTION (provided by applicant): Neuroblastoma is the most common extra-cranial solid tumor of childhood with an appalling 30% cure rate in children with advanced disease. There is a clear need for new chemotherapeutics, as current drugs are only marginally effective at the high doses that result in toxic acute and grave long term side effects. The overall objective of this proposal is to employ modern techniques of protein engineering to develop a new generation of non-immunogenic and pharmacologically optimized enzymes for chemotherapy of neuroblastomas and other central nervous system (CNS) cancers through L-Methionine (L-Met) depletion. L-Met is required not only for protein synthesis but also as the precursor for methylation reductions and for the biosynthesis of polyamines. Tumors have a much greater requirement for L-Met than normal tissues and become apoptotic when its availability is restricted. i.v. administration of bacterial (Pseudomonas) methionine-g-lyase is able to mediated near complete depletion of L-Met in serum and has been shown to drastically inhibit tumor growth of neuroblastomas, glioblastomas and prostate carcinomas in mouse xeongrafts. Furthermore strong synergistic effects with microtubule depolymerization agents have been reported. Unfortunately, in clinical trials the bacterial enzyme was shown to have very poor pharmacological properties (t 1/2 in serum only 2 hrs) and was found to be highly immunogenic in primates eliciting severe adverse responses that resulted in anaphylactic shock and death. While the human genome does not encode any methionine lyase enzymes, in preliminary studies we deployed protein engineering strategies to generate potentially non-immunogenic variants of the human enzyme cystathionine-g-lyase that: (a) exhibit high L-Met degradation activity in vitro and in vivo, (b) display a lower IC50 for neuroblastoma cell lines than their bacterial counterparts and (c) are about 10-fold more stable in mice. Here we will employ structure guided mutagenesis and directed evolution strategies to: 1. Engineer catalytically optimized "human L-methioninases" i.e. cystathionine-g-lyase enzymes with very high activity for L-Met degradation, even better stability in serum and high selectivity. 2. Develop optimized formats of the "human L-methioninases" for prolonged persistence in circulation by either site-specific PEGylation or by fusion to long intrinsically disordered polypeptide sequences (XTEN) and determine their pharmacokinetic and pharmacodynamic properties. 3. Evaluate the efficacy of these enzymes in the mouse xenograft model of human neuroblastoma tumors formed using clinical cell lines established either in diagnosis or relapse. The utility of these enzymes will be investigated both as monotherapy and in combination therapy with vincristine.
DESCRIPTION (provided by applicant): Neuroblastoma is the most common extra-cranial solid tumor of childhood with an appalling 30% cure rate in children with advanced disease. There is a clear need for new chemotherapeutics, as current drugs are only marginally effective at the high doses that result in toxic acute and grave long term side effects. The overall objective of this proposal is to employ modern techniques of protein engineering to develop a new generation of non-immunogenic and pharmacologically optimized enzymes for chemotherapy of neuroblastomas and other central nervous system (CNS) cancers through L-Methionine (L-Met) depletion. L-Met 不仅是蛋白质合成所必需的,而且也是甲基化还原和多胺生物合成的前体。肿瘤对 L-Met 的需求量比正常组织大得多,当 L-Met 的可用性受到限制时,肿瘤就会发生凋亡。静脉注射administration of bacterial (Pseudomonas) methionine-g-lyase is able to mediated near complete depletion of L-Met in serum and has been shown to drastically inhibit tumor growth of neuroblastomas, glioblastomas and prostate carcinomas in mouse xeongrafts.此外,还报道了与微管解聚剂的强烈协同效应。 Unfortunately, in clinical trials the bacterial enzyme was shown to have very poor pharmacological properties (t 1/2 in serum only 2 hrs) and was found to be highly immunogenic in primates eliciting severe adverse responses that resulted in anaphylactic shock and death. While the human genome does not encode any methionine lyase enzymes, in preliminary studies we deployed protein engineering strategies to generate potentially non-immunogenic variants of the human enzyme cystathionine-g-lyase that: (a) exhibit high L-Met degradation activity in vitro and in vivo, (b) display a lower IC50 for neuroblastoma cell lines than their bacterial counterparts (c) 在小鼠体内的稳定性提高了约 10 倍。 Here we will employ structure guided mutagenesis and directed evolution strategies to: 1. Engineer catalytically optimized "human L-methioninases" i.e. cystathionine-g-lyase enzymes with very high activity for L-Met degradation, even better stability in serum and high selectivity. 2. Develop optimized formats of the "human L-methioninases" for prolonged persistence in circulation by either site-specific PEGylation or by fusion to long intrinsically disordered polypeptide sequences (XTEN) and determine their pharmacokinetic and pharmacodynamic properties. 3. Evaluate the efficacy of these enzymes in the mouse xenograft model of human neuroblastoma tumors formed using clinical cell lines established either in diagnosis or relapse.这些酶的效用将作为单一疗法和与长春新碱的联合疗法进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE Georgiou GEORGIOU其他文献
GEORGE Georgiou GEORGIOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE Georgiou GEORGIOU', 18)}}的其他基金
Systematic, molecular level analysis of the Fc receptor ligation on antibody effector functions
Fc 受体连接对抗体效应子功能的系统分子水平分析
- 批准号:
10533299 - 财政年份:2019
- 资助金额:
$ 40.31万 - 项目类别:
Systematic, molecular level analysis of the Fc receptor ligation on antibody effector functions
Fc 受体连接对抗体效应子功能的系统分子水平分析
- 批准号:
10308041 - 财政年份:2019
- 资助金额:
$ 40.31万 - 项目类别:
Development of antibody-based diagnostic assays for filoviruses
开发基于抗体的丝状病毒诊断方法
- 批准号:
8377064 - 财政年份:2012
- 资助金额:
$ 40.31万 - 项目类别:
Engineering and Evaluation of Human L-Methionase for Cancer Therapy
人类 L-甲硫氨酸酶用于癌症治疗的工程和评估
- 批准号:
8607840 - 财政年份:2011
- 资助金额:
$ 40.31万 - 项目类别:
Engineering and Evaluation of Human L-Methionase for Cancer Therapy
人类 L-甲硫氨酸酶用于癌症治疗的工程和评估
- 批准号:
8208991 - 财政年份:2011
- 资助金额:
$ 40.31万 - 项目类别:
Engineering and Evaluation of Human L-Methionase for Cancer Therapy
人类 L-甲硫氨酸酶用于癌症治疗的工程和评估
- 批准号:
8023816 - 财政年份:2011
- 资助金额:
$ 40.31万 - 项目类别:
Development of antibody-based diagnostic assays for filoviruses
开发基于抗体的丝状病毒诊断方法
- 批准号:
8301138 - 财政年份:2011
- 资助金额:
$ 40.31万 - 项目类别:
Human engineered enzymes for L-Arg depletion chemotherapy
用于 L-Arg 耗竭化疗的人类工程酶
- 批准号:
8039233 - 财政年份:2009
- 资助金额:
$ 40.31万 - 项目类别:
Human engineered enzymes for L-Arg depletion chemotherapy
用于 L-Arg 耗竭化疗的人类工程酶
- 批准号:
7636106 - 财政年份:2009
- 资助金额:
$ 40.31万 - 项目类别:
Interconversion of Specificity within Enzyme Families
酶家族内特异性的相互转换
- 批准号:
6859727 - 财政年份:2005
- 资助金额:
$ 40.31万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 40.31万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




