An Integrated Diagnostic System for Rapid Antimicrobial Susceptibility Testing
用于快速抗菌药物敏感性测试的集成诊断系统
基本信息
- 批准号:8477118
- 负责人:
- 金额:$ 98.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-15 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAccident and Emergency departmentAccountingAcuteAddressAmpicillinAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAntimicrobial susceptibilityArizonaBacterial InfectionsBiological AssayBiosensorCiprofloxacinClinicalCommunicable DiseasesComplementDetectionDevelopmentDevicesDiagnosticDoctor of MedicineDoctor of PhilosophyEnteralEnterobacteriaceaeEscherichia coliExpenditureFeasibility StudiesFood ChainGastroenteritisGoalsGram-Negative BacteriaHealth PersonnelHealthcareHealthcare SystemsHospitalsHourHumanIn SituIndustryInfectionInfiltrationKlebsiellaLaboratoriesLeadMeasurementMedical DeviceMicrofluidicsModificationMolecular DiagnosisNational Institute of Allergy and Infectious DiseaseOralOutpatientsPatient CarePatientsPatternPhasePneumoniaPredispositionPreparationPrincipal InvestigatorProcessProteusProtocols documentationQuinolonesReaderRegimenRegulationResearchResistanceResistance profileRibosomal RNASamplingScientistSelection for TreatmentsSmall Business Innovation Research GrantSystemTechniquesTechnologyTest ResultTestingTimeLineTranslationsTrimethoprim-SulfamethoxazoleU-Series Cooperative AgreementsUniversitiesUrinary tract infectionUrineUropathogenUropathogenic E. coliValidationWound Infectionantimicrobialbasebeta-Lactamsbiochipcommercializationcommunity settingevidence baseimprovedinterestmultidisciplinarypathogenpoint of carequinolone resistancesensor
项目摘要
DESCRIPTION (provided by applicant): Pathogens responsible for many of the common human infectious diseases such as urinary tract infection (UTI), gastroenteritis, pneumonia, and wound infections have proven to be highly adept in acquiring mechanisms of antimicrobial resistance. Widespread injudicious practice of empiric antibiotic usage by healthcare providers and infiltration of antibiotics in the food chain have accelerated selection and dissemination of resistant pathogens. As a consequence, clinicians have fewer treatment options, particularly in the most needy patients. An example of the problem was the rapid emergence of trimethoprim- sulfamethoxazole (SXT) resistant E. coli, which accounts for 85-90% of the UTIs in the community setting. Prior to the 1990s, beta-lactams such as ampicillin (AMP) were the standard antimicrobial regimen for acute uncomplicated UTIs, but was replaced with SXT when E. coli resistance against beta-lactams surpassed 25%. With increasing use, however, SXT resistance increased substantially and quinolones such as ciprofloxacin (CIP) became the antibiotic of choice. Not surprisingly, quinolone-resistant uropathogens are on the rise. In hospitals where MDR pathogens are of even greater problem, the quinolone-resistance rate for uropathogenic E. coli has now exceeded 50% in some settings. The goal of this Phase II NIAID Advanced Technology SBIR application is to develop and validate RAST (rapid antimicrobial susceptibility testing), an integrated diagnostic compact system to enable clinicians to direct point-of-care (POC), evidence-based selection of antibiotics for treatment of acute bacterial infections. RAST addresses the major limitations of standard phenotypic AST platforms (e.g., bioMerieux Vitek, BD Phoenix) by providing rapid (90 minutes vs. 2 days) and decentralized (POC vs. laboratory-based) testing. RAST complements our ongoing NIAID Cooperative Agreement, An Integrated Diagnostic Biochip for Point of Care Pathogen Identification (U01 AI082457), for rapid molecular diagnosis urinary tract infections (UTI) using electrochemical biosensors integrated with microfluidics. Since Phase I, we have accomplished several critical milestones: (1) development and clinical validation of a 3.5 hour bench-top RAST protocol showing 94% accuracy; (2) compatibility of RAST with clinical urine samples without need for initial bacterial isolation; (3)
feasibility of on-chip electrokinetic bacterial concentration and assay enhancement; (4) on-chip bacterial culture using microchannels; (5) integrated microfluidic cartridge for pathogen identification; and (6) preliminary feasibility of cartridge-based RAST. In the current Phase II project, we propose three Specific Aims: Specific Aim 1. Optimization and validation of electrokinetic (EK) processing modules for volume reduction and in situ assay enhancement. The goal of Aim 1 is to develop an EK volume reduction module for enriching the sample 100-fold within 10 min and to develop an in situ EK enhancement technique for improving the detection sensitivity of the electrochemical assay by 10-fold. Specific Aim 2. Development of the RAST cartridge for rapid phenotypic antimicrobial susceptibility testing. The goal of Aim 2 is to develop the process flow and fabrication process for the RAST cartridge and reader/manifold system, including sample loading, EK volume reduction, on-chip sample culturing in selective media containing different antibiotics of interest, and phenotypic AST by quantitative measurement of bacterial 16S rRNA. Specific Aim 3. Clinical translation of RAST cartridge in urine. The goal of Aim 3 is to perform analytical validation of RAST cartridge and reader/manifold system and a clinical feasibility study using 30 unknown clinical samples from patients suspected to have UTI. The development and validation of RAST will adhere to the recommended standards of Quality Management Standard for Medical Devices (ISO 13485) and federal regulations for fully automated short-term incubation cycle antimicrobial susceptibility system (21 CFR 866.1645)(see Commercialization Plan D.1.3). Successful accomplishment of our milestones in this Phase II application will be followed by FDA 510(k) submission to demonstrate the system is substantially equivalent to a predicate device. A separate Milestones and Timeline section is included at the end of the Research Strategy.
描述(由申请人提供):已证明导致许多常见人类感染性疾病(如尿路感染(UTI)、胃肠炎、肺炎和伤口感染)的病原体非常擅长获得抗菌素耐药性机制。卫生保健提供者经验性使用抗生素的普遍不明智做法以及抗生素在食物链中的渗透加速了耐药病原体的选择和传播。因此,临床医生的治疗选择较少,特别是在最需要的患者中。这个问题的一个例子是耐甲氧苄氨嘧啶-磺胺甲恶唑(SXT)的大肠杆菌的迅速出现.大肠杆菌,占社区UTI的85-90%。在20世纪90年代之前,β-内酰胺类药物(例如氨比西林(AMP))是急性无并发症尿路感染的标准抗菌药物方案,但当大肠杆菌感染时,被SXT取代。大肠杆菌对β-内酰胺类抗生素的耐药率超过25%。然而,随着使用的增加,SXT耐药性大幅增加,喹诺酮类如环丙沙星(CIP)成为首选抗生素。毫不奇怪,喹诺酮类耐药尿路病原体正在上升。在MDR病原体问题更严重的医院,泌尿系致病性大肠埃希菌的喹诺酮类耐药率。大肠杆菌在某些环境中已经超过了50%。该II期NIAID先进技术SBIR应用的目标是开发和验证RAST(快速抗菌药物敏感性测试),这是一种集成的诊断紧凑型系统,使临床医生能够指导护理点(POC),循证选择抗生素治疗急性细菌感染。RAST解决了标准表型AST平台的主要局限性(例如,bioMerieux Vitek,BD Phoenix),提供快速(90分钟vs. 2天)和分散(POC vs.基于实验室的)检测。RAST补充了我们正在进行的NIAID合作协议,用于护理点病原体识别的集成诊断生物芯片(U 01 AI 082457),用于使用与微流体集成的电化学生物传感器快速分子诊断尿路感染(UTI)。自第一阶段以来,我们已经完成了几个关键的里程碑:(1)开发和临床验证3.5小时的台式RAST方案,显示94%的准确性;(2)RAST与临床尿液样本的兼容性,而无需初始细菌分离;(3)
芯片上电动细菌浓缩和测定增强的可行性;(4)使用微通道的芯片上细菌培养;(5)用于病原体鉴定的集成微流体盒;以及(6)基于微柱的RAST的初步可行性。在目前的第二阶段项目中,我们提出了三个具体目标:具体目标1。优化和验证电动(EK)处理模块,以减少体积和原位测定增强。目标1的目标是开发一种EK体积减少模块,用于在10分钟内富集样品100倍,并开发一种原位EK增强技术,用于将电化学测定的检测灵敏度提高10倍。具体目标2。快速表型抗菌药物敏感性测试用RAST卡匣的开发。目标2的目标是开发RAST检测盒和读数器/歧管系统的工艺流程和制造过程,包括样品加载、EK体积减少、在含有不同目标抗生素的选择性培养基中进行芯片上样品培养,以及通过定量测量细菌16 S rRNA进行表型AST。具体目标3。尿液中RAST检测盒的临床转化。目标3的目标是使用来自疑似UTI患者的30份未知临床样本对RAST检测盒和读数器/歧管系统进行分析确认,并进行临床可行性研究。 RAST的开发和确认将遵循医疗器械质量管理标准(ISO 13485)的推荐标准和全自动短期孵育周期抗菌药物敏感性系统的联邦法规(21 CFR 866.1645)(见商业化计划D.1.3)。成功完成本阶段II申请中的里程碑后,将提交FDA 510(k),以证明该系统与同品种器械实质等同。在研究策略的末尾包含一个单独的里程碑和时间轴部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Jen-Jr Gau其他文献
Vincent Jen-Jr Gau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Jen-Jr Gau', 18)}}的其他基金
Promote HPV screening rate with a non-invasive HPV POC cartridge
使用非侵入性 HPV POC 检测盒提高 HPV 筛查率
- 批准号:
8962209 - 财政年份:2015
- 资助金额:
$ 98.95万 - 项目类别:
An antibiogram-based CentriCapillary system for neonatal sepsis PID and AST
基于抗菌谱的 CentriCapillary 系统,用于治疗新生儿败血症 PID 和 AST
- 批准号:
8906593 - 财政年份:2015
- 资助金额:
$ 98.95万 - 项目类别:
A fully integrated CentriFluidic system for direct bloodstream infection PID/AST
用于直接血流感染 PID/AST 的完全集成 CentriFluidic 系统
- 批准号:
9241943 - 财政年份:2015
- 资助金额:
$ 98.95万 - 项目类别:
A fully integrated CentriFluidic system for direct bloodstream infection PID/AST
用于直接血流感染 PID/AST 的完全集成 CentriFluidic 系统
- 批准号:
9015781 - 财政年份:2015
- 资助金额:
$ 98.95万 - 项目类别:
An antibiogram-based CentriCapillary system for neonatal sepsis PID and AST
基于抗菌谱的 CentriCapillary 系统,用于治疗新生儿败血症 PID 和 AST
- 批准号:
9170096 - 财政年份:2015
- 资助金额:
$ 98.95万 - 项目类别:
An Integrated Diagnostic System for Rapid Antimicrobial Susceptibility Testing
用于快速抗菌药物敏感性测试的集成诊断系统
- 批准号:
8655138 - 财政年份:2010
- 资助金额:
$ 98.95万 - 项目类别:
Near patient molecular diagnostics test for infections
患者附近感染分子诊断测试
- 批准号:
9202870 - 财政年份:2010
- 资助金额:
$ 98.95万 - 项目类别:
Rapid Prototyping Method and Design Library for Universal POC Application
通用POC应用的快速原型方法和设计库
- 批准号:
8001583 - 财政年份:2010
- 资助金额:
$ 98.95万 - 项目类别:
Near patient molecular diagnostics test for infections
患者附近感染分子诊断测试
- 批准号:
9540791 - 财政年份:2010
- 资助金额:
$ 98.95万 - 项目类别:
Rapid Antibiotic Susceptibility Testing for Neonatal Intensive Units
新生儿重症监护病房的快速抗生素敏感性测试
- 批准号:
7903816 - 财政年份:2010
- 资助金额:
$ 98.95万 - 项目类别:














{{item.name}}会员




