Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
基本信息
- 批准号:8623454
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAstrocytesAttentionAxonBiological AssayCell Differentiation processCell TherapyCellsDevelopmentDevicesDiseaseDrug TargetingEffectivenessEngineeringEnvironmentExposure toGene ActivationGene DeliveryGene ExpressionGenesGoalsGoldHeat shock proteinsHeat-Shock ResponseHeatingHumanHuman EngineeringHyperthermiaImageIn VitroInduced HyperthermiaInflammationInjuryKnowledgeLabelMagnetic Resonance ImagingMagnetismMethodologyMethodsMicrofluidicsModelingMyelin SheathNatural regenerationNatureNerveNeuronsOligodendrogliaPlasmidsPropertyRattusReporter GenesReportingRouteScientistSignal TransductionSpinal cord injuryStem cell transplantTestingTherapeuticTherapeutic EffectTranscription factor genesTransfectionTransplantationZincaxon growthbasecell fate specificationclinical applicationclinically relevantculture platesexpression vectorgene therapyimprovediron oxidemagnetic fieldmyelinationnanomaterialsnanoparticleneural graftneuronal circuitryneuroregulationnovelnovel strategiesoverexpressionprecursor cellpromoterpublic health relevancerelating to nervous systemremyelinationstemstem cell differentiationstem cell therapystem cellstissue culturetranscription factortransmission processvectorwhite matter
项目摘要
DESCRIPTION: The long-term goal of this application represents the development of novel magnetic core/shell nanoparticles (MCNPs) to deliver and spatiotemporally trigger the differentiation of stem cells to oligodendrocytes. With regard to spinal cord injury, neural stem/progenitor cell (NSPCs) transplantation has been shown to afford a number of favorable therapeutic effects. However, grafted NSPCs were found to differentiate primarily into astrocytes, which tend to hinder the effectiveness of transplantation. The guided differentiation of the grafted NSPCs into oligodendrocytes is highly desirable since these cells provide myelin sheaths around axons and thus enable fast propagation of nerve impulses in the CNS. To this end, the objective is to develop novel MCNPs, which have the dual functions of delivering a plasmid encoding Olig2, which has previously been reported to induce NSPC differentiation to oligodendrocytes, under a heat shock promoter and triggering Olig2 expression through magnetic hyperthermia (i.e. using an alternating magnetic field). To address these challenges, the following specific aims are proposed: Specific Aim 1. To prepare magnetic core/shell nanoparticles and inducible gene vectors for delivery into human induced pluirpotent stem cell-derived neural stem/progenitor cells (hiPSC-derived NSPCs). Specific Aim 2. To test the oligodendrocyte differentiation and remyelination ability of the engineered NSPCs in vitro after magnetic hyperthermia-induced gene expression. Magnetic nanoparticles have previously been applied for MRI, cell targeting, and drug/gene delivery. However, there is a critical gap between the existing knowledge and the clinical application of these nanoparticles to stem cell-based therapy. Therefore, the development of a novel MCNP-based stem cell therapy will demonstrate the multifunctional nature of MNPs for a clinically-relevant SCI treatment. In particular, compared to conventional gene therapies and cellular labeling methodologies, a MCNP-based approach would offer many advantages including: i) non-invasive magnetic resonance imaging (due to magnetic core) and Raman imaging (due to the gold shell) capabilities, ii) magnetic field-facilitated delivery ('magnetofection') of gene vectors into the stem cells, and iii) magnetic hyperthermia, which will be used to provide a mechanism for the activation of the delivered gene. Overall, the proposed MCNP approach will bring a methodology to the forefront that can allow the user to achieve spatial and temporal control over cellular differentiation, while potentially maintaining the neuroprotective properties innate to stem/precursor cells. In this way,
scientists and clinicians can harness the full potential of stem cells (i.e. intrinsic therapeutic properties and controlled cell fate specification) for an enhanced SCI treatment.
描述:这一应用的长期目标是开发新型磁性核/壳纳米颗粒(MCNPs),以输送并在时空上触发干细胞向少突胶质细胞的分化。在脊髓损伤方面,神经干细胞/祖细胞移植已被证明具有许多良好的治疗效果。然而,移植的NSPC被发现主要分化为星形胶质细胞,这往往阻碍移植的有效性。移植的NSPC定向分化为少突胶质细胞是非常可取的,因为这些细胞在轴突周围提供髓鞘,从而使神经冲动在中枢神经系统快速传播。为此,我们的目标是开发新型的MCNPs,它具有在热休克启动子的作用下传递编码寡核苷酸的质粒和通过磁热(即使用交变磁场)触发寡核苷酸表达的双重功能。先前报道的寡核苷酸可以在热休克启动子下诱导NSPC向少突胶质细胞分化。为了应对这些挑战,提出了以下具体目标:具体目标1.制备磁性核/壳纳米粒子和可诱导的基因载体,用于将其导入人诱导雨生干细胞来源的神经干细胞/祖细胞(hiPSC来源的神经干细胞/祖细胞)。具体目的2.检测体外培养的工程化NSPC在磁热诱导基因表达后的少突胶质细胞分化和再髓鞘形成能力。磁性纳米颗粒此前已被应用于磁共振成像、细胞靶向和药物/基因输送。然而,现有的知识和这些纳米颗粒在干细胞治疗中的临床应用之间存在着严重的差距。因此,基于MCNP的新型干细胞疗法的发展将展示MNPs用于临床相关脊髓损伤治疗的多功能性质。特别是,与传统的基因疗法和细胞标记方法相比,基于MCNP的方法将提供许多优势,包括:i)非侵入性磁共振成像(由于磁核)和拉曼成像(由于金壳)能力,ii)磁场促进的基因载体进入干细胞的输送(‘磁融合’),以及iii)磁热疗法,这将被用来为所传递的基因的激活提供一种机制。总体而言,建议的MCNP方法将把一种方法学带入前沿,允许用户实现对细胞分化的空间和时间控制,同时潜在地保持干细胞/前体细胞固有的神经保护特性。就这样,
科学家和临床医生可以利用干细胞的全部潜力(即固有的治疗特性和受控的细胞命运规范)来加强脊髓损伤的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kibum Lee其他文献
Kibum Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kibum Lee', 18)}}的其他基金
Investigating mitochondrial dysfunction in neurodegeneration using A Nanoparticle-based Synthetic Mitochondrial DNA (mtDNA) Transcription Regulator
使用基于纳米颗粒的合成线粒体 DNA (mtDNA) 转录调节器研究神经退行性变中的线粒体功能障碍
- 批准号:
10679826 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Injectable Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries
可注射混合 SMART 球体增强干细胞治疗中枢神经系统损伤
- 批准号:
10752890 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Nanoparticle-based synthetic transcription factor to induce stem cell myogenesis
基于纳米颗粒的合成转录因子诱导干细胞肌发生
- 批准号:
9461879 - 财政年份:2017
- 资助金额:
$ 19.22万 - 项目类别:
Novel magnetic core/shell nanoparticle-based stem cell therapy to direct neural s
新型磁核/壳纳米颗粒干细胞疗法可指导神经系统
- 批准号:
8737987 - 财政年份:2013
- 资助金额:
$ 19.22万 - 项目类别:
Combinatorial approaches for studying multiple cues regulating human pluripotent
研究调节人类多能性的多种线索的组合方法
- 批准号:
7848757 - 财政年份:2009
- 资助金额:
$ 19.22万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10263913 - 财政年份:2000
- 资助金额:
$ 19.22万 - 项目类别:
Postdoctoral Training for Translating Research in Regenerative Medicine
再生医学研究转化博士后培训
- 批准号:
10430245 - 财政年份:2000
- 资助金额:
$ 19.22万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 19.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
- 批准号:
10699505 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
- 批准号:
10676686 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
- 批准号:
10567723 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别: