Injury and adaptation in the developing rat corticospinal and rubrospinal tracts
发育中的大鼠皮质脊髓和红核脊髓束的损伤和适应
基本信息
- 批准号:8523984
- 负责人:
- 金额:$ 18.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAreaAxonBirthBrainBrain InjuriesBypassCerebral PalsyChildChronicCorticospinal TractsElectric StimulationFigs - dietaryFinancial compensationFoodGoalsHandHumanHyperreflexiaImplanted ElectrodesInfantInjuryIpsilateralLearningLimb structureLogicMeasuresMediatingMethodsModelingMotorMotor CortexMotor PathwaysMotor SkillsMovementNeonatalParalysedPathway interactionsPatternPerinatal Brain InjuryPhysical therapyPlasticsPostureRattusRecoveryRed nucleus structureReflex actionRelative (related person)SideSpinalSpinal CordStructure of rubrospinal tractSuid Herpesvirus 1SystemTechniquesTestingTimeViralWalkingbasedensitydisabilityfeedingfunctional restorationgraspimprovedinhibitor/antagonistinjuredjuvenile animalmature animalmotor controlmotor function recoveryneural circuitnovelrelating to nervous systemrepairedresponseresponse to injuryskillsvisual motor
项目摘要
DESCRIPTION (provided by applicant): Summary: Most injuries to the brain or spinal cord spare some connections between the areas of brain that initiate movement and the areas of spinal cord that produce movement. A pivotal question for recovery of movement is the degree to which spared connections can compensate for injured ones. We will study the adaptation of spared motor pathways to injury of the corticospinal tract (CST), the principal pathway for voluntary movement in humans. The CST, which connects the motor cortex to the spinal cord, controls fine hand movements and modulates spinal cord reflexes. We will cut the CST emanating from one hemisphere and test the ability of spared circuits to take over the lost function. Specifically, we will examine two circuits: 1) the uninjured half of the CST through its sparse ipsilateral projections, and 2) a bypass circuit on the injured side from cortex to red nucleus to spinal cord. We will injure rats soon after birth, a time when these connections are plastic and the opportunity for compensation is highest. We then measure the response of these spared systems using two novel techniques-retrograde transsynaptic tracing using pseudorabies virus, and stereological quantification of axonal connections. Thus, we will determine which spared system sprouts greater connections in response to injury. In adult rats with neonatal injury to one half of the CST, we will test the functional limits of pathway compensation. We will use both novel and proven tests of functions that depend critically on the CST: reaching to grasp, walking over a ladder, food manipulation, and control of a spinal cord reflex. We predict that there will be incomplete recovery of the specialized motor skills. For functions that do recover, we will temporarily inactivate each of the two spared pathways, by infusing an inhibitor of neural activity, to test their contribution to recovery. We expect that the recovered functions will be lost transiently in the pathway that shows the greatest amount of injury-induced plasticity. Finally, we will selectively activate the most adaptive circuit to try to improve upon endogenous recovery. Using chronic stimulation through an implanted electrode, we intend to harness activity-dependent plasticity to strengthen motor connections. We predict that these targeted manipulations will create a more adaptive pattern of brain- spinal cord connections, as measured by tracing and stimulation techniques, and help to restore function, based on the aforementioned motor tasks. Many human infants, especially those born prematurely, sustain injury to the CST. This often results in paralysis and spasticity on one side of the body. Activity, in the form of physical therapy and non-invasive brain stimulation can be used to alter connections in humans. These studies will help to determine where activity should be applied in order to strengthen the circuits that mediate spontaneous recovery. Thus, we use anatomically precise injury, tracing, inactivation, and stimulation to determine the circuit-level logic for repair of the motor systems. This could improve our ability to restore function in people with early brain injury.
描述(由申请人提供): 摘要:大多数大脑或脊髓损伤都会保留启动运动的大脑区域和产生运动的脊髓区域之间的一些连接。运动恢复的一个关键问题是备用连接可以在多大程度上补偿受伤的连接。我们将研究幸存的运动通路对皮质脊髓束(CST)损伤的适应,皮质脊髓束是人类自主运动的主要通路。 CST 连接运动皮层和脊髓,控制精细的手部运动并调节脊髓反射。我们将切断来自一个半球的 CST,并测试备用电路接管丢失功能的能力。具体来说,我们将检查两个回路:1)未受伤的一半 CST 通过其稀疏的同侧投影,2)受伤侧从皮质到红核到脊髓的旁路回路。我们会在老鼠出生后不久伤害老鼠,此时这些联系是可塑的,获得补偿的机会最高。然后,我们使用两种新技术测量这些幸免系统的反应——使用伪狂犬病病毒的逆行突触追踪和轴突连接的体视定量。因此,我们将确定哪个幸存的系统会在受伤时产生更多的连接。在一半 CST 受到新生损伤的成年大鼠中,我们将测试通路补偿的功能极限。我们将使用关键依赖于 CST 的新颖且经过验证的功能测试:伸手抓握、在梯子上行走、食物操作和脊髓反射的控制。我们预测专业运动技能的恢复将不完全。对于确实恢复的功能,我们将通过注入神经活动抑制剂来暂时灭活两条幸存的通路,以测试它们对恢复的贡献。我们预计恢复的功能将在显示出最大程度的损伤诱导可塑性的途径中短暂丧失。最后,我们将有选择地激活最具适应性的电路,以尝试改善内源性恢复。通过植入电极进行慢性刺激,我们打算利用活动依赖性可塑性来加强运动连接。我们预测,这些有针对性的操作将创建一种更具适应性的脑脊髓连接模式(通过追踪和刺激技术测量),并根据上述运动任务帮助恢复功能。许多人类婴儿,尤其是早产婴儿,CST 都会受到损伤。这通常会导致身体一侧瘫痪和痉挛。物理治疗和非侵入性大脑刺激形式的活动可用于改变人类的联系。这些研究将有助于确定应在何处进行活动,以加强介导自发恢复的回路。因此,我们使用解剖学上精确的损伤、追踪、失活和刺激来确定运动系统修复的电路级逻辑。这可以提高我们恢复早期脑损伤患者功能的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Brant Carmel其他文献
Jason Brant Carmel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Brant Carmel', 18)}}的其他基金
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10622969 - 财政年份:2022
- 资助金额:
$ 18.46万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10533329 - 财政年份:2020
- 资助金额:
$ 18.46万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10156241 - 财政年份:2020
- 资助金额:
$ 18.46万 - 项目类别:
Paired brain and spinal cord stimulation to strengthen spinal sensorimotor circuits
配对大脑和脊髓刺激以增强脊髓感觉运动回路
- 批准号:
10311547 - 财政年份:2020
- 资助金额:
$ 18.46万 - 项目类别:
Advanced materials for safe and effective stimulation of the rat cervical spinal cord
安全有效刺激大鼠颈脊髓的先进材料
- 批准号:
9212133 - 财政年份:2016
- 资助金额:
$ 18.46万 - 项目类别:
Advanced materials for safe and effective stimulation of the rat cervical spinal cord
安全有效刺激大鼠颈脊髓的先进材料
- 批准号:
9035746 - 财政年份:2016
- 资助金额:
$ 18.46万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 18.46万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 18.46万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 18.46万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 18.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




