Development of shape memory polymer-based implantable electrode systems.
开发基于形状记忆聚合物的植入式电极系统。
基本信息
- 批准号:8592884
- 负责人:
- 金额:$ 33.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcrylatesActive SitesAnimal ExperimentationAnimalsAutomobile DrivingBiocompatible MaterialsBloodBrainChemistryChronicDataDevelopmentDevicesElasticityElectrodesElectronicsEmerging TechnologiesEngineeringEquipment MalfunctionFDA approvedGliosisHeadHourImmune responseImmunohistochemistryImplantIn VitroLeadLettersManufacturer NameMarketingMeasuresMechanicsMemoryMetricModelingModificationMotionMovementNeurologicNoiseOperative Surgical ProceduresPatientsPerformancePhasePolymersPopulationProcessPropertyRattusSafetySalesShapesSignal TransductionSiliconSiteSmall Business Innovation Research GrantStructureSulfhydryl CompoundsSurfaceSystemTechnologyTemperatureTestingTimeTissuesTractionUnited StatesVariantbaseclinical efficacydensitydesignexperiencefunctional improvementimplantable deviceimplantationin vivoneurophysiologynovelpublic health relevancerelating to nervous system
项目摘要
DESCRIPTION (provided by applicant): More than 100,000 patients worldwide have some form of permanently implanted neural interface in the brain. Although effective, these interfaces have several technical limitations that limit the full scope of their clinical efficacy. For severa decades, silicon technology has been touted as the most likely candidate for creating more advanced neural interfaces. Silicon seems to be an ideal and biocompatible material from which to create more advanced interfaces that are miniature, high-density, batch-fabricated and capable of supporting active on-board electronics. Silicon, however, is a brittle material, and while its stiffness allows for easy implant into soft neural tissue, it presents a serious mechanicl mismatch between the implanted device and the soft neural tissue after implant. In this Phase I SBIR "Lab to Marketplace" proposal, Vulintus LLC will explore the feasibility of a developing a novel class of substrate materials called Shape Memory Polymers (SMP) for the long-term neural implant market. SMP materials are unique in that they offer the traditional technical advantages of silicon (ultra-miniature, batch-fabricated photolithography structures with on-board electronics), but with the added benefit of having much more controllable mechanical and surface chemistry properties. By manipulating the polymer composition, the material can be engineered to undergo a change in modulus of elasticity following implantation. Vulintus will demonstrate an advanced batch fabricated high-yield electrode interface that is up to 100,000 times less stiff than a silicon structure. Vulintus hypothesizes that this paradigm-shifting 'multile modulus' material is ideally suited for extending the long-term functionality of neural interfaces by creating an interface that deforms with brain motion, minimizing tissue damage. The following specific aims are proposed: Aim 1: Demonstrate that differences in material stiffness lead to variations in the immune response for implanted t-e/a SMP neural interfaces. Aim 2: Characterize in vivo functionality of 'optimized' t-e/a SMP cortical electrodes in the rat brain: Preliminary in vitro and in vivo data collected by Vulintus and partners suggest that t-e/a SMP materials are biocompatible and indeed appropriate for invasive neural engineering applications. Vulintus will establish close partnerships with NeuroNexus, a leading commercial electrode manufacturer (see letters of support) to allow us to rapidly take advantage of this emerging technology and gain traction in the commercial market. In Phase I, the feasibility of t-e/a SMP safety and efficacy for long-term functional implants in a rat model will be demonstrated. In Phase II, Vulintus will explore surface chemistry modifications and post-processing steps to allow population and encapsulation of onboard electronics as well as demonstrate and test a product line for use in the commercial animal research market.
描述(由申请人提供):全世界有100,000多名患者在大脑中具有某种形式的永久性植入神经界面。尽管有效,但这些界面具有多种技术局限性,可以限制其临床功效的全部范围。在Severa几十年来,硅技术一直被吹捧为创建更先进的神经界面的最有可能的候选人。硅似乎是一种理想且具有生物相容性的材料,可以从中创建更高级的界面,这些界面是微型,高密度,批量制造的,并且能够支持主动的车载电子产品。然而,硅是一种脆性的材料,尽管其刚度允许易于植入软神经组织,但它在植入后植入的装置和软神经组织之间呈现出严重的机械师不匹配。在这一阶段I SBIR“实验室到市场”提案中,Vulintus LLC将探讨一种为长期神经植入物市场开发的一种新型的底物材料,称为Shape Memory聚合物(SMP)。 SMP材料的独特之处在于它们提供了传统的技术优势(具有板载电子设备的超细量,批量制造的光刻结构),但具有更具可控的机械和表面化学性能的额外好处。通过操纵聚合物组成,可以设计材料以经历植入后弹性模量的变化。 Vulintus将展示一个高级制造的高收益电极界面,其刚性比硅结构少100,000倍。 Volintus假设这种范式转移的“多模量”材料非常适合通过创建随着脑运动变形,最小化组织损伤的界面来扩展神经接口的长期功能。提出了以下具体目的:目标1:证明材料刚度的差异会导致植入T-E/A SMP神经接口的免疫反应的变化。 AIM 2:表征大鼠大脑中“优化” T-E/A SMP皮层电极的体内功能:Vulintus和Partners收集的初步体外和体内数据,这表明T-E/A SMP材料是生物相容性的,并且确实适用于侵入性的神经工程应用。 Vulintus将与领先的商业电极制造商Neuronexus建立密切合作伙伴关系(请参阅支持信),以使我们能够迅速利用这项新兴技术并在商业市场中获得吸引力。在第一阶段,将证明T-E/A SMP安全性和功效对于大鼠模型中长期功能植入物的可行性。在第二阶段,Vulintus将探索表面化学修改和后处理步骤,以允许人口和封装机上电子产品,并演示和测试产品线,以用于商业动物研究市场。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and demonstration of an intracortical probe technology with tunable modulus.
- DOI:10.1002/jbm.a.35896
- 发表时间:2017-01
- 期刊:
- 影响因子:4.9
- 作者:Simon, Dustin M.;Charkhkar, Hamid;St John, Conan;Rajendran, Sakthi;Kang, Tong;Reit, Radu;Arreaga-Salas, David;McHail, Daniel G.;Knaack, Gretchen L.;Sloan, Andrew;Grasse, Dane;Dumas, Theodore C.;Rennaker, Robert L.;Pancrazio, Joseph J.;Voit, Walter E.
- 通讯作者:Voit, Walter E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Michael Sloan其他文献
Andrew Michael Sloan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Michael Sloan', 18)}}的其他基金
SensiTrak: Automated Assessment of Forelimb Sensation
SensiTrak:前肢感觉自动评估
- 批准号:
10259383 - 财政年份:2021
- 资助金额:
$ 33.23万 - 项目类别:
HabiTrak: low-cost, wireless home cage health and activity monitoring.
HabiTrak:低成本、无线家庭笼子健康和活动监控。
- 批准号:
10201441 - 财政年份:2018
- 资助金额:
$ 33.23万 - 项目类别:
HabiTrak: low-cost, wireless home cage health and activity monitoring.
HabiTrak:低成本、无线家庭笼子健康和活动监控。
- 批准号:
10010113 - 财政年份:2018
- 资助金额:
$ 33.23万 - 项目类别:
Development of a turnkey system for assessing forelimb function in rats and mice.
开发用于评估大鼠和小鼠前肢功能的交钥匙系统。
- 批准号:
8922350 - 财政年份:2014
- 资助金额:
$ 33.23万 - 项目类别:
Development of a turnkey system for assessing forelimb function in rats and mice.
开发用于评估大鼠和小鼠前肢功能的交钥匙系统。
- 批准号:
8715164 - 财政年份:2014
- 资助金额:
$ 33.23万 - 项目类别:
Development of a software package for speech therapy.
开发言语治疗软件包。
- 批准号:
8713831 - 财政年份:2014
- 资助金额:
$ 33.23万 - 项目类别:
The Role of Tonic Neural Responses in Auditory Pitch Perception in Awake Rat A1
强直神经反应在清醒大鼠 A1 听觉感知中的作用
- 批准号:
7275562 - 财政年份:2007
- 资助金额:
$ 33.23万 - 项目类别:
The Role of Tonic Neural Responses in Auditory Pitch Perception in Awake Rat A1
强直神经反应在清醒大鼠 A1 听觉感知中的作用
- 批准号:
7345393 - 财政年份:2007
- 资助金额:
$ 33.23万 - 项目类别:
相似国自然基金
醋酸酯—甲醛制丙烯酸酯新型催化体系构筑及反应过程
- 批准号:22308361
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
用于CO2捕集的MOFs/聚丙烯酸酯多孔材料复合结构设计与可控合成
- 批准号:U22B20147
- 批准年份:2022
- 资助金额:243.00 万元
- 项目类别:联合基金项目
基于热/光双固化蓖麻油基聚氨酯丙烯酸酯预聚物的薄晶圆切割用UV光致可剥离胶的构建及固化机理
- 批准号:22178085
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
一步合成丙烯酸酯的双效催化体系研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
香草醛改性聚丙烯酸酯/Ti3C2Tx-Cu2O纳米复合涂层微结构与抗菌性调控
- 批准号:22108166
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 33.23万 - 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 33.23万 - 项目类别:
Next Gen Targeted nanoparticles for Inhibiting Gli2 in Bone Metastatic Tumors
用于抑制骨转移肿瘤中 Gli2 的下一代靶向纳米颗粒
- 批准号:
10623705 - 财政年份:2023
- 资助金额:
$ 33.23万 - 项目类别:
3D Printed Engineered Living Materials for Drug Delivery
用于药物输送的 3D 打印工程活性材料
- 批准号:
10370976 - 财政年份:2022
- 资助金额:
$ 33.23万 - 项目类别:
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 33.23万 - 项目类别: