Modulation of neural function in energy failure
能量衰竭时神经功能的调节
基本信息
- 批准号:8472552
- 负责人:
- 金额:$ 33.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:Absence EpilepsyAddressAnesthesia proceduresAnimal ModelAnticonvulsantsBiochemicalBrainBrain regionCarbonCarbon DioxideCell Culture SystemCellsCerebral cortexCerebrumCitric Acid CycleClinicalConsciousDataDefectDevelopmentDietDietary FatsDiseaseDisorder of neurometabolic regulationElectrocorticogramElectrophysiology (science)EncephalopathiesEnergy MetabolismEpilepsyEpileptogenesisEquilibriumFailureFatty AcidsFatty acid glycerol estersFoodFunctional disorderGABA ReceptorGenerationsGenesGlucoseGlucose TransporterGlutamate ReceptorGlutamatesGoalsHealthHepaticHumanImpairmentIn VitroInborn Genetic DiseasesInheritedInterventionIntractable EpilepsyInvestigationKetone BodiesKetonesKnowledgeLaboratoriesLifeMass Spectrum AnalysisMeasuresMedicalMental RetardationMetabolicMetabolic Brain DiseasesMetabolic DiseasesMetabolismMethodologyMethodsMissionModelingModificationMotivationMotorMusMutationNeurologicNeurologic DysfunctionsNeuronsNeurophysiology - biologic functionNeurotransmittersNutrientPatientsPerformanceProcessReactionResearchResistanceSLC2A1 geneSeizuresSite-Directed MutagenesisSliceSynapsesTestingThalamic structureTherapeuticTranslatingTreatment EfficacyUnited States National Institutes of HealthWaterWorkbasebehavioral impairmentbrain metabolismbrain tissuedisabling diseasegamma-Aminobutyric Acidglucose metabolismglucose transportglucose uptakehuman datahuman diseaseinnovationketogenic dietketogenticmouse modelneocorticalneurotransmissionnovelnovel therapeuticspalliativerelating to nervous systemstemsynaptic functiontherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Human glucose transporter type I-deficiency (G1D) leads to reduced brain glucose influx and neurological dysfunction principally manifested as epilepsy. Normally, most glucose is fully degraded into CO2 and water for brain energy generation via the tricarboxylic acid (TCA) cycle, which is also central to the synthesis and utilization of the neurotransmitters glutamate and GABA. Importantly, a fraction of glucose does not directly generate energy, but refills natural TCA cycle precursor loss through a reaction termed anaplerosis. Despite these long-established biochemical principles, it is unclear how most diseases that impair brain metabolism and cause seizures disrupt excitability within brain tissue (rather than in vitro), including G1D, which leads to spike-wave epilepsy. This knowledge gap about mechanisms critically limits treatment, as illustrated by anticonvulsant resistance in G1D, which is also the rule in many other neurometabolic disorders. Our laboratory and clinical long-term goal is to mechanistically understand these brain metabolism-excitability relationships in patients and mouse models to develop pharmacological and dietary therapies. The objectives of this application are to characterize hyperexcitability in a novel, robust G1D mouse model and to mitigate it by stimulating both anaplerosis and the TCA cycle with dietary substrates. Our human data and preliminary laboratory results, such as the finding of TCA cycle precursor depletion and of abnormal neocortical and thalamic excitability in G1D mice, justify investigating these mechanisms in more depth to understand epileptic hypersynchronization as a central feature of human and murine G1D. This leads to the main hypothesis that synaptic dysfunction is critical for disease pathophysiology. The proposal also includes the therapeutic consideration that even-carbon ketones, generated from common dietary fats or a ketogenic diet, can fuel the TCA cycle and ameliorate seizures in G1D, but are not anaplerotic. In contrast, our data open a new therapeutic opportunity because administered odd-carbon fat refills brain TCA cycle precursors efficiently in G1D; leading to the additional hypothesis that it restores neural functio more effectively than even-carbon fat via anaplerosis. The hypotheses will be tested in three aims: 1) Investigate the basis of cortical hyperexcitability in G1D; 2) Expand this mechanistic approach to the thalamus; 3) Restore brain metabolism and function via anaplerosis. The proposal is significant because its focus on metabolism-excitability relationships and anaplerosis in brain tissue using a very informative mouse model represents a shift in approach to neurometabolic diseases, where electrophysiology, 13C NMR and mass spectrometry offer a complementary understanding of mechanisms conducive to potential therapies. Particularly innovative is to combine an investigation of synaptic function in circuits or brain regions crucial
for epilepsy, impaired behavior or mental retardation with the development of methodology sensitive to conscious mouse brain metabolism with broad applicability to other encephalopathies. In summary, we expect that this proposal will help define G1D as a synaptic disorder and render it amenable to excitable or metabolic target modification.
描述(由申请人提供):人葡萄糖转运蛋白i型缺乏(G1D)导致脑葡萄糖流减少和神经功能障碍,主要表现为癫痫。正常情况下,大多数葡萄糖通过三羧酸(TCA)循环被完全降解为二氧化碳和水,用于大脑能量的产生,这也是神经递质谷氨酸和GABA的合成和利用的核心。重要的是,一小部分葡萄糖并不直接产生能量,而是通过一种被称为修复的反应来补充天然TCA循环前体的损失。尽管有这些长期建立的生化原理,但目前尚不清楚大多数损害脑代谢并导致癫痫发作的疾病是如何在脑组织内(而不是体外)破坏兴奋性的,包括导致尖波癫痫的G1D。这种机制上的知识差距严重限制了治疗,正如G1D的抗惊厥药耐药性所表明的那样,这也是许多其他神经代谢疾病的规律。我们的实验室和临床长期目标是在患者和小鼠模型中机械地了解这些脑代谢-兴奋性关系,以开发药理学和饮食疗法。本应用的目的是在一种新型的、稳健的G1D小鼠模型中表征高兴奋性,并通过饮食底物刺激过敏和TCA循环来减轻高兴奋性。我们的人体数据和初步实验室结果,如在G1D小鼠中发现TCA循环前体耗竭和新皮层和丘脑异常兴奋性,证明了更深入地研究这些机制,以了解癫痫过度同步是人类和小鼠G1D的核心特征。这导致了突触功能障碍对疾病病理生理至关重要的主要假设。该建议还包括治疗性考虑,即使是由普通膳食脂肪或生酮饮食产生的碳酮,也可以促进TCA循环并改善G1D的癫痫发作,但不会逆转。相比之下,我们的数据打开了一个新的治疗机会,因为给药的奇碳脂肪在G1D中有效地重新填充脑TCA循环前体;这导致了另一个假设,即它甚至比碳脂肪通过复位更有效地恢复神经功能。这些假设将在三个方面得到验证:1)研究G1D皮层高兴奋性的基础;2)将这种机械方法扩展到丘脑;3)通过修复恢复脑代谢和功能。该建议意义重大,因为它关注的是代谢-兴奋性关系和脑组织中的骨质疏松,使用了一个非常信息丰富的小鼠模型,代表了神经代谢性疾病方法的转变,其中电生理学,13C NMR和质谱提供了对有助于潜在治疗的机制的补充理解。特别创新的是结合对神经回路或大脑关键区域突触功能的研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan M. Pascual其他文献
Exosomes in disease: Epigenetic signals from the nervous system to the rest of the organism
- DOI:
10.1016/j.neulet.2019.134293 - 发表时间:
2019-08-24 - 期刊:
- 影响因子:
- 作者:
Juan M. Pascual;Denis Noble - 通讯作者:
Denis Noble
Charcot-Marie-Tooth Disease
- DOI:
10.1017/9781107323704.088 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Juan M. Pascual - 通讯作者:
Juan M. Pascual
Juan M. Pascual的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan M. Pascual', 18)}}的其他基金
Dietary treatment of Glut1 deficiency (G1D) - Revision - 1
Glut1 缺乏症 (G1D) 的饮食治疗 - 修订版 - 1
- 批准号:
10447556 - 财政年份:2021
- 资助金额:
$ 33.56万 - 项目类别:
Pyruvate dehydrogenase encephalopathy: mechanisms and therapy
丙酮酸脱氢酶脑病:机制和治疗
- 批准号:
10225409 - 财政年份:2017
- 资助金额:
$ 33.56万 - 项目类别:
Pyruvate dehydrogenase encephalopathy: mechanisms and therapy
丙酮酸脱氢酶脑病:机制和治疗
- 批准号:
10000180 - 财政年份:2017
- 资助金额:
$ 33.56万 - 项目类别:
Dietary treatment of Glucose Transporter Type 1 Deficiency (G1D)
1 型葡萄糖转运蛋白缺乏症 (G1D) 的饮食治疗
- 批准号:
9755514 - 财政年份:2016
- 资助金额:
$ 33.56万 - 项目类别:
Dietary treatment of Glucose Transporter Type 1 Deficiency (G1D)
1 型葡萄糖转运蛋白缺乏症 (G1D) 的饮食治疗
- 批准号:
9538850 - 财政年份:2016
- 资助金额:
$ 33.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Research Grant