Differentiation of mitochondrial vs. nuclear function of telomerase

端粒酶线粒体与核功能的区分

基本信息

  • 批准号:
    8681115
  • 负责人:
  • 金额:
    $ 19.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-21 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Telomerase, a ribo-nucleoprotein that counteracts telomere shortening, has recently been suggested as having a telomere independent survival function. A protective effect of telomerase on mitochondrial function under conditions of oxidative stress has been described, yet the exact mechanism and phenotype linked to mitochondrial or nuclear TERT (catalytic subunit of telomerase) is not clearly identified. We have shown that in the presence of coronary artery disease or acute vascular stressors, there is a shift in the mechanism of flow mediated dilation (FMD) from NO to H2O2. The current study aims to differentiate the role of nuclear TERT vs. mitochondrial TERT in the development of cardiovascular (CV) disease. In our central hypothesis, mitochondrial TERT plays a critical and previously undiscovered role in reducing mitochondrial reactive oxygen species (ROS) thus protecting against CV disease and other ROS associated disorders. This study will focus on CV health and use FMD and its mechanism and redox environment as physiological markers. The conceptual paradigm shift tested is that mitochondrial TERT decreases mitochondrial ROS production by improving mitochondrial respiratory chain activity. This contributes to maintaining normal NO levels, thereby preserving physiological regulation of FMD in the microvasculature. Conversely, we postulate that reduced mitochondrial TERT results in increased mitochondrial ROS, driving microvascular dysfunction by changing the mediator of FMD from NO to H2O2 thereby creating a pro-inflammatory milieu. We will be using state of the art methods to evaluate vascular reactivity alongside molecular evaluation of the redox environment to characterize the role of telomerase in regulating cellular and mitochondrial ROS levels. This novel hypothesis and the models generated have important translational potential and will be extremely useful for investigators studying varying diseases and in multiple fields.
描述(由申请人提供):端粒酶,一种核蛋白,抵消端粒缩短,最近被认为具有端粒独立的生存功能。在氧化应激条件下,端粒酶对线粒体功能的保护作用已被描述,但与线粒体或核TERT(端粒酶的催化亚基)相关的确切机制和表型尚未明确确定。我们已经证明,在冠状动脉疾病或急性血管应激源存在的情况下,血流介导的扩张(FMD)机制从NO转变为H2O2。目前的研究旨在区分核TERT和线粒体TERT在心血管(CV)疾病发展中的作用。在我们的中心假设中,线粒体TERT在减少线粒体活性氧(ROS)中起着至关重要的作用,这是以前未被发现的,从而防止心血管疾病和其他ROS相关疾病。本研究将以心血管健康为研究重点,以FMD及其机制和氧化还原环境为生理指标。经测试的概念范式转变是,线粒体TERT通过改善线粒体呼吸链活性来减少线粒体ROS的产生。这有助于维持正常的一氧化氮水平,从而保持微血管中FMD的生理调节。相反,我们假设线粒体TERT的减少导致线粒体ROS的增加,通过将FMD的介质从NO改变为H2O2,从而产生促炎环境,从而驱动微血管功能障碍。我们将使用最先进的方法来评估血管反应性以及氧化还原环境的分子评估,以表征端粒酶在调节细胞和线粒体ROS水平中的作用。这一新的假设和模型具有重要的转化潜力,对研究不同疾病和多个领域的研究人员非常有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas M Beyer其他文献

Quantitative characterization of nanometer-scale electric fields via momentum-resolved STEM
通过动量分辨 STEM 定量表征纳米级电场
  • DOI:
    10.1017/s1431927621007947
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Andreas M Beyer;M. Munde;S. Firoozabadi;Damien Heimes;T. Grieb;A. Rosenauer;K. Müller;K. Volz
  • 通讯作者:
    K. Volz
Self-Catalyzed GaP Nanowire MOVPE Growth on Si
Si 上自催化 GaP 纳米线 MOVPE 生长
  • DOI:
    10.1016/j.jcrysgro.2023.127138
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    David Krug;J. Glowatzki;Franziska Hüppe;M. Widemann;F. Gruber;Andreas M Beyer;K. Volz
  • 通讯作者:
    K. Volz
Impact of AlN buffer layers on MBE grown cubic GaN layers
AlN 缓冲层对 MBE 生长的立方 GaN 层的影响
  • DOI:
    10.1117/12.2648960
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    J. Schörmann;M. F. Zscherp;Nils Mengel;D. Hofmann;Vitalii Lider;Badrosadat Ojaghi Dogahe;C. Becker;Andreas M Beyer;K. Volz;S. Chatterjee
  • 通讯作者:
    S. Chatterjee
AlN Buffer Enhances the Layer Quality of MBE-Grown Cubic GaN on 3C-SiC
AlN 缓冲剂提高了 3C-SiC 上 MBE 生长的立方 GaN 的层质量
  • DOI:
    10.1021/acs.cgd.2c00927
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. F. Zscherp;Nils Mengel;D. Hofmann;Vitalii Lider;Badrosadat Ojaghi Dogahe;C. Becker;Andreas M Beyer;K. Volz;J. Schörmann;S. Chatterjee
  • 通讯作者:
    S. Chatterjee
Bioinformatic Analysis of Gene Sets Regulated by Ligand-Activated and Dominant-Negative Peroxisome Proliferator–Activated Receptor &ggr; in Mouse Aorta
小鼠主动脉中配体激活和显性负性过氧化物酶体增殖物激活受体调控的基因组的生物信息学分析

Andreas M Beyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas M Beyer', 18)}}的其他基金

Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
  • 批准号:
    10180126
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
  • 批准号:
    10450793
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
  • 批准号:
    10655397
  • 财政年份:
    2021
  • 资助金额:
    $ 19.13万
  • 项目类别:
Pivotal Role of Mitochondrial Telomerase in Regulation of Vascular Tone and Redox Homeostasis
线粒体端粒酶在血管张力和氧化还原稳态调节中的关键作用
  • 批准号:
    9307494
  • 财政年份:
    2017
  • 资助金额:
    $ 19.13万
  • 项目类别:
Pivotal Role of Mitochondrial Telomerase in Regulation of Vascular Tone and Redox Homeostasis
线粒体端粒酶在血管张力和氧化还原稳态调节中的关键作用
  • 批准号:
    9886254
  • 财政年份:
    2017
  • 资助金额:
    $ 19.13万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 19.13万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了