Targeting PAK1 to improve functional beta-cell mass and insulin sensitivity
靶向 PAK1 以改善功能性 β 细胞质量和胰岛素敏感性
基本信息
- 批准号:8815580
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-12 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAm 80ApoptosisBeta CellBiochemicalBiological AssayBiological PreservationBiosensorBlood GlucoseCardiovascular systemCell SurvivalCell membraneCell physiologyCell surfaceCellsCytoskeletonDataDefectDevelopmentDiabetes MellitusDietDiseaseDockingEmployee StrikesEventExocytosisExposure toF-ActinFailureFastingFatty acid glycerol estersFunctional disorderGLUT4 geneGeneticGlucoseGlucose IntoleranceGoalsHealthHumanHyperglycemiaInsulinInsulin ResistanceIntakeInterventionKnock-outKnockout MiceKnowledgeLifeLinkMediatingMissionMolecularMusMuscleMuscle FibersMyocardial InfarctionNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusObesityOutcomePancreasPathway interactionsPeripheralPlayPopulationPrediabetes syndromePredispositionPreventionProcessProteinsPublic HealthReportingResearchRisk FactorsRoleSNAP receptorSignal TransductionSkeletal MuscleStimulusStrokeTestingTherapeuticTissuesVesicleWorkbaseblood glucose regulationcell typecellular imagingdiabeticfeedingglucose uptakeimpaired glucose toleranceimprovedin vivoinnovationinsulin granuleinsulin secretioninsulin sensitivityisletmortalitynew therapeutic targetp21 activated kinasepreventrestorationscaffold
项目摘要
DESCRIPTION (provided by applicant): As blood sugars rise during development of pre-diabetes, cardiovascular consequences such as stroke, myocardial infarction and mortality are already increasing by 2-4 fold, yet there remains a fundamental gap in understanding how and why pre-diabetes develops. The inability to predict, within a population with similar risk factors for diabetes, which are more susceptible than others represents an important problem because, until it is resolved, strategies to prevent/treat pre-diabetes/dysglycemia will remain largely untenable. Strategies to halt dysglycemia require a multi-pronged approach, since the pathophysiology involves both peripheral insulin resistance and pancreatic β cell dysfunction. Factors that are linked to failures in both processes are in-demand for therapeutic focus; we have identified the p21-activated kinase, PAK1, as such a factor. Further, losses of PAK1 abundance are associated with diabetes and obesity in human islets and human skeletal muscle, tissues that are key to regulating insulin release and insulin sensitivity, respectively. Thus, the long-term goal is to understand how the PAK1 pathways in these tissues can be manipulated to treat/prevent pre-diabetes, ultimately halting progression to frank diabetes. The objective of this particular application is to discriminate how PAK1 functions (PAK1 plays roles in signaling as well as scaffolding in other cell types) in β cell insulin secretion and skeletal muscle insulin action in vivo and at the molecular level. PAK1 pathways are known in other cell types to evoke dynamic actin cytoskeleton changes, and preliminary data suggest such changes to be part of insulin release and glucose clearance mechanisms. Preliminary data show that classic whole-body PAK1 knockout mice fed a 42% fat diet for just 10 weeks develop fasting hyperglycemia, insulin insufficiency and severe glucose intolerance. Additionally, restoration of PAK1 abundance or signaling in islet β cells restores insulin secretion and reduces β cell apoptosis. These findings give rise to the central hypotheses, that a) PAK1 is a central regulator of glucose homeostasis via functions in actin remodeling-regulated exocytosis events in both β cells and skeletal muscle cells, and b) that PAK1 deficiency culminates in heightened susceptibility to glycemic dysregulation and pre-diabetes. The rationale for the proposed research is that once it is known how PAK1 is needed in β cells versus skeletal muscle cells, that the PAK1 pathways can be manipulated to avert pre-diabetic dysglycemia. This hypothesis will be tested in two Specific Aims: 1) Delineate the mechanism(s) for PAK1 actions in β cell function and survival, 2) Elucidate the mechanism(s) by which PAK1 promotes skeletal muscle insulin sensitivity. Aims will be accomplished using innovative inducible β cell and skeletal muscle PAK1 knockout mice and live-cell imaging biosensors with biochemical assays, and relevant human islet and muscle tissues. Results of these interrogations are expected to positively impact efforts to ameliorate pre-diabetes, because the identified effectors and mechanisms are highly likely to provide new therapeutic targets.
描述(由申请人提供):随着糖尿病前期发展期间血糖升高,心血管后果(如中风、心肌梗死和死亡率)已经增加了2-4倍,但在理解糖尿病前期如何以及为什么发展方面仍然存在根本性差距。在具有类似糖尿病风险因素的人群中,无法预测哪些人群比其他人群更易患糖尿病,这是一个重要的问题,因为在解决这个问题之前,预防/治疗糖尿病前期/功能障碍的策略将在很大程度上仍然是站不住脚的。阻止功能障碍的策略需要多管齐下的方法,因为病理生理学涉及外周胰岛素抵抗和胰腺β细胞功能障碍。与这两个过程中的失败有关的因素是治疗重点的需求;我们已经确定了p21激活激酶PAK 1,作为这样一个因素。此外,PAK 1丰度的丧失与人胰岛和人骨骼肌中的糖尿病和肥胖相关,这些组织分别是调节胰岛素释放和胰岛素敏感性的关键。因此,长期目标是了解如何操纵这些组织中的PAK 1通路来治疗/预防糖尿病前期,最终阻止进展为坦率的糖尿病。该特定应用的目的是在体内和分子水平上区分PAK 1在β细胞胰岛素分泌和骨骼肌胰岛素作用中如何发挥功能(PAK 1在其他细胞类型中在信号传导以及支架中起作用)。已知PAK 1途径在其他细胞类型中引起动态肌动蛋白细胞骨架变化,初步数据表明这种变化是胰岛素释放和葡萄糖清除机制的一部分。初步数据显示,经典的全身PAK 1基因敲除小鼠喂食42%的脂肪饮食仅10周,就会出现空腹高血糖、胰岛素不足和严重的葡萄糖耐受不良。此外,胰岛β细胞中PAK 1丰度或信号传导的恢复恢复胰岛素分泌并减少β细胞凋亡。这些发现产生了中心假设,即a)PAK 1是葡萄糖稳态的中心调节剂,其通过β细胞和骨骼肌细胞中肌动蛋白重塑调节的胞吐事件中的功能来实现,以及B)PAK 1缺乏导致对血糖失调和前驱糖尿病的易感性增加。这项研究的基本原理是,一旦知道β细胞与骨骼肌细胞如何需要PAK 1,就可以操纵PAK 1通路来避免糖尿病前期的功能障碍。将在两个特定目的中检验该假设:1)描述PAK 1在β细胞功能和存活中的作用机制,2)阐明PAK 1促进骨骼肌胰岛素敏感性的机制。将使用创新的可诱导β细胞和骨骼肌PAK 1敲除小鼠和具有生化测定的活细胞成像生物传感器以及相关的人类胰岛和肌肉组织来实现目标。这些询问的结果有望对改善糖尿病前期的努力产生积极影响,因为所确定的效应物和机制极有可能提供新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debbie C Thurmond其他文献
Debbie C Thurmond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debbie C Thurmond', 18)}}的其他基金
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
10677652 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
10457932 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
10223269 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
10016267 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
9917089 - 财政年份:2019
- 资助金额:
$ 34.78万 - 项目类别:
DOC2B-based therapeutics for prevention/remediation of type 2 diabetes
基于 DOC2B 的 2 型糖尿病预防/治疗疗法
- 批准号:
10165703 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
8759392 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
Targeting an atypical signaling hub to restore and protect whole body glucose homeostasis
针对非典型信号中枢恢复和保护全身葡萄糖稳态
- 批准号:
10311546 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
Regulating SNARE mechanisms to remediate glucose homeostasis
调节 SNARE 机制修复葡萄糖稳态
- 批准号:
9069140 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
Targeting an atypical signaling hub to restore and protect whole body glucose homeostasis
针对非典型信号中枢恢复和保护全身葡萄糖稳态
- 批准号:
10395891 - 财政年份:2014
- 资助金额:
$ 34.78万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Operating Grants














{{item.name}}会员




