Interactive Informatics Resource for Research-driven Cancer Proteomics

研究驱动型癌症蛋白质组学的交互式信息学资源

基本信息

项目摘要

DESCRIPTION (provided by applicant): In 2013 over 1.6 million new cases of cancer are expected to be diagnosed and over 580,000 people are expected to die of the disease. Thus, continued research in the identification of new diagnostic and prognostic biomarkers of cancer is necessary. Although cancer is widely recognized as a genomic disease, the directives of the DNA-based drivers are executed at the level of proteins and their biological functions, and the application of potential protein level biomarkers remains a compelling vision. Thus, a large investment has been made by NCI and other research centers in high-throughput global proteomics experiments to mine for novel biomarkers of cancer. However, few of these markers have come to fruition. We believe that one of the major challenges to the discovery of robust protein- or pathway-biomarker candidates from these large and complex proteomics datasets is due to naive data analysis approaches that do not take into account the underlying complexity of the proteome (e.g., splice variants, post- translational modifications). State-of-the-art statistical algorithms to improve the tasks of quality assessment, peptide and protein quantification, and pathway modeling that are designed to account for the design of the experiment have been developed; however access to these methodologies by the larger community is hindered since they are in the prototype stage and typically require knowledge of statistical programming. Furthermore, the likelihood of these tools moving to robust software is low since they are developed within the context of existing grants that do not support the transition from prototype to software. For the field of clinical proteomics to successfully identif new mechanistic etiologies of cancer requires not only high quality data with respect to the instrument, but also high quality statistical analysis of the data. This project proposes new informatics technology in the form of a robust, interactive and cross- platform software environment that will enable biomedical and biological scientists to perform in-depth analyses of global proteomics data from the point of quality assessment and normalization of raw inferred abundances (e.g., peak area) to the identification of protein biomarkers and enriched pathways. The software will be designed in a single programming language (Java) to assure easy installation across platforms with wizard-based data entry and advanced data reporting. Java will also support the development of advanced graphical user interfaces for data presentation and interactive graphics with a modern look and feel. This approach will ensure that scientists outside of the development institution can develop modules to include in the software or extensions for data integration without challenges of re-compiling the application. The software modules to be developed under this project are Aim 1) peptide and protein level quality assessment and quantification, Aim 2) protein biomarker discovery via exploratory data analysis and machine learning, and Aim 3) pathway biomarker discovery through integration with the NCI Protein Interaction Database.
描述(由申请人提供):2013年,预计将有超过160万的新癌症病例被诊断出来,预计将有超过58万人死于癌症。因此,继续研究新的癌症诊断和预后生物标志物是必要的。尽管癌症被广泛认为是一种基因组疾病,但基于dna的驱动程序的指令是在蛋白质及其生物学功能水平上执行的,潜在的蛋白质水平生物标志物的应用仍然是一个令人信服的愿景。因此,NCI和其他研究中心在高通量全球蛋白质组学实验中进行了大量投资,以挖掘新的癌症生物标志物。然而,这些标志几乎没有实现。我们认为,从这些庞大而复杂的蛋白质组学数据集中发现强大的蛋白质或通路生物标志物候选物的主要挑战之一是由于幼稚的数据分析方法没有考虑到蛋白质组的潜在复杂性(例如,剪接变异体,翻译后修饰)。已经开发了最先进的统计算法,以改进质量评估,肽和蛋白质定量以及旨在解释实验设计的途径建模任务;然而,由于这些方法还处于原型阶段,并且通常需要统计编程知识,因此阻碍了大型社区使用这些方法。此外,这些工具转移到健壮软件的可能性很低,因为它们是在现有授权的背景下开发的,不支持从原型到软件的转换。对于临床蛋白质组学领域来说,要成功识别癌症的新机制病因,不仅需要高质量的仪器数据,还需要高质量的数据统计分析。该项目提出了一种新的信息学技术,以一种强大的、交互式的、跨平台的软件环境的形式,使生物医学和生物科学家能够对全球蛋白质组学数据进行深入的分析,从质量评估和原始推断丰度(例如,峰面积)的规范化到蛋白质生物标记物和富集途径的鉴定。该软件将以单一编程语言(Java)设计,以确保易于跨平台安装,具有基于向导的数据输入和高级数据报告。Java还将支持开发高级图形用户界面,用于数据表示和具有现代外观的交互式图形。这种方法将确保开发机构之外的科学家可以开发包含在软件中的模块或数据集成的扩展,而不需要重新编译应用程序。该项目将开发的软件模块包括:Aim 1)肽和蛋白质水平质量评估和定量;Aim 2)通过探索性数据分析和机器学习发现蛋白质生物标志物;Aim 3)通过与NCI蛋白质相互作用数据库集成发现通路生物标志物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BOBBIE-JO Mary WEBB-ROBERTSON其他文献

BOBBIE-JO Mary WEBB-ROBERTSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BOBBIE-JO Mary WEBB-ROBERTSON', 18)}}的其他基金

Interactive Informatics Resource for Research-driven Cancer Proteomics
研究驱动型癌症蛋白质组学的交互式信息学资源
  • 批准号:
    8847691
  • 财政年份:
    2014
  • 资助金额:
    $ 41.99万
  • 项目类别:
Visual Analytics Software Environment for Proteomics Data Integration
用于蛋白质组学数据集成的可视化分析软件环境
  • 批准号:
    7943075
  • 财政年份:
    2009
  • 资助金额:
    $ 41.99万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了